forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_numeric.py
553 lines (436 loc) · 18.2 KB
/
test_numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
Series,
)
import pandas._testing as tm
class TestFloatNumericIndex:
@pytest.fixture(params=[np.float64, np.float32])
def dtype(self, request):
return request.param
@pytest.fixture
def simple_index(self, dtype):
values = np.arange(5, dtype=dtype)
return Index(values)
@pytest.fixture(
params=[
[1.5, 2, 3, 4, 5],
[0.0, 2.5, 5.0, 7.5, 10.0],
[5, 4, 3, 2, 1.5],
[10.0, 7.5, 5.0, 2.5, 0.0],
],
ids=["mixed", "float", "mixed_dec", "float_dec"],
)
def index(self, request, dtype):
return Index(request.param, dtype=dtype)
@pytest.fixture
def mixed_index(self, dtype):
return Index([1.5, 2, 3, 4, 5], dtype=dtype)
@pytest.fixture
def float_index(self, dtype):
return Index([0.0, 2.5, 5.0, 7.5, 10.0], dtype=dtype)
def test_repr_roundtrip(self, index):
tm.assert_index_equal(eval(repr(index)), index, exact=True)
def check_coerce(self, a, b, is_float_index=True):
assert a.equals(b)
tm.assert_index_equal(a, b, exact=False)
if is_float_index:
assert isinstance(b, Index)
else:
assert type(b) is Index
def test_constructor_from_list_no_dtype(self):
index = Index([1.5, 2.5, 3.5])
assert index.dtype == np.float64
def test_constructor(self, dtype):
index_cls = Index
# explicit construction
index = index_cls([1, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
expected = np.array([1, 2, 3, 4, 5], dtype=dtype)
tm.assert_numpy_array_equal(index.values, expected)
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
assert isinstance(index, index_cls)
assert index.dtype == dtype
# nan handling
result = index_cls([np.nan, np.nan], dtype=dtype)
assert pd.isna(result.values).all()
result = index_cls(np.array([np.nan]), dtype=dtype)
assert pd.isna(result.values).all()
def test_constructor_invalid(self):
index_cls = Index
cls_name = index_cls.__name__
# invalid
msg = (
rf"{cls_name}\(\.\.\.\) must be called with a collection of "
r"some kind, 0\.0 was passed"
)
with pytest.raises(TypeError, match=msg):
index_cls(0.0)
def test_constructor_coerce(self, mixed_index, float_index):
self.check_coerce(mixed_index, Index([1.5, 2, 3, 4, 5]))
self.check_coerce(float_index, Index(np.arange(5) * 2.5))
result = Index(np.array(np.arange(5) * 2.5, dtype=object))
assert result.dtype == object # as of 2.0 to match Series
self.check_coerce(float_index, result.astype("float64"))
def test_constructor_explicit(self, mixed_index, float_index):
# these don't auto convert
self.check_coerce(
float_index, Index((np.arange(5) * 2.5), dtype=object), is_float_index=False
)
self.check_coerce(
mixed_index, Index([1.5, 2, 3, 4, 5], dtype=object), is_float_index=False
)
def test_type_coercion_fail(self, any_int_numpy_dtype):
# see gh-15832
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
Index([1, 2, 3.5], dtype=any_int_numpy_dtype)
def test_equals_numeric(self):
index_cls = Index
idx = index_cls([1.0, 2.0])
assert idx.equals(idx)
assert idx.identical(idx)
idx2 = index_cls([1.0, 2.0])
assert idx.equals(idx2)
idx = index_cls([1.0, np.nan])
assert idx.equals(idx)
assert idx.identical(idx)
idx2 = index_cls([1.0, np.nan])
assert idx.equals(idx2)
@pytest.mark.parametrize(
"other",
(
Index([1, 2], dtype=np.int64),
Index([1.0, 2.0], dtype=object),
Index([1, 2], dtype=object),
),
)
def test_equals_numeric_other_index_type(self, other):
idx = Index([1.0, 2.0])
assert idx.equals(other)
assert other.equals(idx)
@pytest.mark.parametrize(
"vals",
[
pd.date_range("2016-01-01", periods=3),
pd.timedelta_range("1 Day", periods=3),
],
)
def test_lookups_datetimelike_values(self, vals, dtype):
# If we have datetime64 or timedelta64 values, make sure they are
# wrapped correctly GH#31163
ser = Series(vals, index=range(3, 6))
ser.index = ser.index.astype(dtype)
expected = vals[1]
result = ser[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.at[4.0]
assert isinstance(result, type(expected)) and result == expected
# GH#31329 .at[4] should cast to 4.0, matching .loc behavior
result = ser.at[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.iloc[1]
assert isinstance(result, type(expected)) and result == expected
result = ser.iat[1]
assert isinstance(result, type(expected)) and result == expected
def test_doesnt_contain_all_the_things(self):
idx = Index([np.nan])
assert not idx.isin([0]).item()
assert not idx.isin([1]).item()
assert idx.isin([np.nan]).item()
def test_nan_multiple_containment(self):
index_cls = Index
idx = index_cls([1.0, np.nan])
tm.assert_numpy_array_equal(idx.isin([1.0]), np.array([True, False]))
tm.assert_numpy_array_equal(idx.isin([2.0, np.pi]), np.array([False, False]))
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, True]))
tm.assert_numpy_array_equal(idx.isin([1.0, np.nan]), np.array([True, True]))
idx = index_cls([1.0, 2.0])
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, False]))
def test_fillna_float64(self):
index_cls = Index
# GH 11343
idx = Index([1.0, np.nan, 3.0], dtype=float, name="x")
# can't downcast
exp = Index([1.0, 0.1, 3.0], name="x")
tm.assert_index_equal(idx.fillna(0.1), exp, exact=True)
# downcast
exp = index_cls([1.0, 2.0, 3.0], name="x")
tm.assert_index_equal(idx.fillna(2), exp)
# object
exp = Index([1.0, "obj", 3.0], name="x")
tm.assert_index_equal(idx.fillna("obj"), exp, exact=True)
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
assert idx.all() == idx.to_series().all()
assert idx.any() == idx.to_series().any()
class TestNumericInt:
@pytest.fixture(params=[np.int64, np.int32, np.int16, np.int8, np.uint64])
def dtype(self, request):
return request.param
@pytest.fixture
def simple_index(self, dtype):
return Index(range(0, 20, 2), dtype=dtype)
def test_is_monotonic(self):
index_cls = Index
index = index_cls([1, 2, 3, 4])
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is True
assert index.is_monotonic_decreasing is False
assert index._is_strictly_monotonic_decreasing is False
index = index_cls([4, 3, 2, 1])
assert index.is_monotonic_increasing is False
assert index._is_strictly_monotonic_increasing is False
assert index._is_strictly_monotonic_decreasing is True
index = index_cls([1])
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
def test_is_strictly_monotonic(self):
index_cls = Index
index = index_cls([1, 1, 2, 3])
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is False
index = index_cls([3, 2, 1, 1])
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is False
index = index_cls([1, 1])
assert index.is_monotonic_increasing
assert index.is_monotonic_decreasing
assert not index._is_strictly_monotonic_increasing
assert not index._is_strictly_monotonic_decreasing
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self, simple_index, dtype):
index = simple_index
idx = Index(index.copy())
assert idx.identical(index)
same_values_different_type = Index(idx, dtype=object)
assert not idx.identical(same_values_different_type)
idx = index.astype(dtype=object)
idx = idx.rename("foo")
same_values = Index(idx, dtype=object)
assert same_values.identical(idx)
assert not idx.identical(index)
assert Index(same_values, name="foo", dtype=object).identical(idx)
assert not index.astype(dtype=object).identical(index.astype(dtype=dtype))
def test_cant_or_shouldnt_cast(self, dtype):
msg = r"invalid literal for int\(\) with base 10: 'foo'"
# can't
data = ["foo", "bar", "baz"]
with pytest.raises(ValueError, match=msg):
Index(data, dtype=dtype)
def test_view_index(self, simple_index):
index = simple_index
msg = "Passing a type in .*Index.view is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
index.view(Index)
def test_prevent_casting(self, simple_index):
index = simple_index
result = index.astype("O")
assert result.dtype == np.object_
class TestIntNumericIndex:
@pytest.fixture(params=[np.int64, np.int32, np.int16, np.int8])
def dtype(self, request):
return request.param
def test_constructor_from_list_no_dtype(self):
index = Index([1, 2, 3])
assert index.dtype == np.int64
def test_constructor(self, dtype):
index_cls = Index
# scalar raise Exception
msg = (
rf"{index_cls.__name__}\(\.\.\.\) must be called with a collection of some "
"kind, 5 was passed"
)
with pytest.raises(TypeError, match=msg):
index_cls(5)
# copy
# pass list, coerce fine
index = index_cls([-5, 0, 1, 2], dtype=dtype)
arr = index.values.copy()
new_index = index_cls(arr, copy=True)
tm.assert_index_equal(new_index, index, exact=True)
val = int(arr[0]) + 3000
# this should not change index
if dtype != np.int8:
# NEP 50 won't allow assignment that would overflow
arr[0] = val
assert new_index[0] != val
if dtype == np.int64:
# pass list, coerce fine
index = index_cls([-5, 0, 1, 2], dtype=dtype)
expected = Index([-5, 0, 1, 2], dtype=dtype)
tm.assert_index_equal(index, expected)
# from iterable
index = index_cls(iter([-5, 0, 1, 2]), dtype=dtype)
expected = index_cls([-5, 0, 1, 2], dtype=dtype)
tm.assert_index_equal(index, expected, exact=True)
# interpret list-like
expected = index_cls([5, 0], dtype=dtype)
for cls in [Index, index_cls]:
for idx in [
cls([5, 0], dtype=dtype),
cls(np.array([5, 0]), dtype=dtype),
cls(Series([5, 0]), dtype=dtype),
]:
tm.assert_index_equal(idx, expected)
def test_constructor_corner(self, dtype):
index_cls = Index
arr = np.array([1, 2, 3, 4], dtype=object)
index = index_cls(arr, dtype=dtype)
assert index.values.dtype == index.dtype
if dtype == np.int64:
without_dtype = Index(arr)
# as of 2.0 we do not infer a dtype when we get an object-dtype
# ndarray of numbers, matching Series behavior
assert without_dtype.dtype == object
tm.assert_index_equal(index, without_dtype.astype(np.int64))
# preventing casting
arr = np.array([1, "2", 3, "4"], dtype=object)
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
index_cls(arr, dtype=dtype)
def test_constructor_coercion_signed_to_unsigned(
self,
any_unsigned_int_numpy_dtype,
):
# see gh-15832
msg = "|".join(
[
"Trying to coerce negative values to unsigned integers",
"The elements provided in the data cannot all be casted",
]
)
with pytest.raises(OverflowError, match=msg):
Index([-1], dtype=any_unsigned_int_numpy_dtype)
def test_constructor_np_signed(self, any_signed_int_numpy_dtype):
# GH#47475
scalar = np.dtype(any_signed_int_numpy_dtype).type(1)
result = Index([scalar])
expected = Index([1], dtype=any_signed_int_numpy_dtype)
tm.assert_index_equal(result, expected, exact=True)
def test_constructor_np_unsigned(self, any_unsigned_int_numpy_dtype):
# GH#47475
scalar = np.dtype(any_unsigned_int_numpy_dtype).type(1)
result = Index([scalar])
expected = Index([1], dtype=any_unsigned_int_numpy_dtype)
tm.assert_index_equal(result, expected, exact=True)
def test_coerce_list(self):
# coerce things
arr = Index([1, 2, 3, 4])
assert isinstance(arr, Index)
# but not if explicit dtype passed
arr = Index([1, 2, 3, 4], dtype=object)
assert type(arr) is Index
class TestFloat16Index:
# float 16 indexes not supported
# GH 49535
def test_constructor(self):
index_cls = Index
dtype = np.float16
msg = "float16 indexes are not supported"
# explicit construction
with pytest.raises(NotImplementedError, match=msg):
index_cls([1, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1, 2, 3, 4, 5]), dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
# nan handling
with pytest.raises(NotImplementedError, match=msg):
index_cls([np.nan, np.nan], dtype=dtype)
with pytest.raises(NotImplementedError, match=msg):
index_cls(np.array([np.nan]), dtype=dtype)
@pytest.mark.parametrize(
"box",
[list, lambda x: np.array(x, dtype=object), lambda x: Index(x, dtype=object)],
)
def test_uint_index_does_not_convert_to_float64(box):
# https://github.com/pandas-dev/pandas/issues/28279
# https://github.com/pandas-dev/pandas/issues/28023
series = Series(
[0, 1, 2, 3, 4, 5],
index=[
7606741985629028552,
17876870360202815256,
17876870360202815256,
13106359306506049338,
8991270399732411471,
8991270399732411472,
],
)
result = series.loc[box([7606741985629028552, 17876870360202815256])]
expected = Index(
[7606741985629028552, 17876870360202815256, 17876870360202815256],
dtype="uint64",
)
tm.assert_index_equal(result.index, expected)
tm.assert_equal(result, series.iloc[:3])
def test_float64_index_equals():
# https://github.com/pandas-dev/pandas/issues/35217
float_index = Index([1.0, 2, 3])
string_index = Index(["1", "2", "3"])
result = float_index.equals(string_index)
assert result is False
result = string_index.equals(float_index)
assert result is False
def test_map_dtype_inference_unsigned_to_signed():
# GH#44609 cases where we don't retain dtype
idx = Index([1, 2, 3], dtype=np.uint64)
result = idx.map(lambda x: -x)
expected = Index([-1, -2, -3], dtype=np.int64)
tm.assert_index_equal(result, expected)
def test_map_dtype_inference_overflows():
# GH#44609 case where we have to upcast
idx = Index(np.array([1, 2, 3], dtype=np.int8))
result = idx.map(lambda x: x * 1000)
# TODO: we could plausibly try to infer down to int16 here
expected = Index([1000, 2000, 3000], dtype=np.int64)
tm.assert_index_equal(result, expected)
def test_view_to_datetimelike():
# GH#55710
idx = Index([1, 2, 3])
res = idx.view("m8[s]")
expected = pd.TimedeltaIndex(idx.values.view("m8[s]"))
tm.assert_index_equal(res, expected)
res2 = idx.view("m8[D]")
expected2 = idx.values.view("m8[D]")
tm.assert_numpy_array_equal(res2, expected2)
res3 = idx.view("M8[h]")
expected3 = idx.values.view("M8[h]")
tm.assert_numpy_array_equal(res3, expected3)