forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_numba.py
331 lines (258 loc) · 11.2 KB
/
test_numba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import numpy as np
import pytest
from pandas.compat import is_platform_arm
from pandas.errors import NumbaUtilError
from pandas import (
DataFrame,
Series,
option_context,
)
import pandas._testing as tm
from pandas.util.version import Version
pytestmark = [pytest.mark.single_cpu]
numba = pytest.importorskip("numba")
pytestmark.append(
pytest.mark.skipif(
Version(numba.__version__) == Version("0.61") and is_platform_arm(),
reason=f"Segfaults on ARM platforms with numba {numba.__version__}",
)
)
def test_correct_function_signature():
pytest.importorskip("numba")
def incorrect_function(x):
return x + 1
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key").transform(incorrect_function, engine="numba")
with pytest.raises(NumbaUtilError, match="The first 2"):
data.groupby("key")["data"].transform(incorrect_function, engine="numba")
def test_check_nopython_kwargs():
pytest.importorskip("numba")
def incorrect_function(values, index, *, a):
return values + a
def correct_function(values, index, a):
return values + a
data = DataFrame(
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
columns=["key", "data"],
)
# py signature binding
with pytest.raises(
TypeError, match="missing a required (keyword-only argument|argument): 'a'"
):
data.groupby("key").transform(incorrect_function, engine="numba", b=1)
with pytest.raises(TypeError, match="missing a required argument: 'a'"):
data.groupby("key").transform(correct_function, engine="numba", b=1)
with pytest.raises(
TypeError, match="missing a required (keyword-only argument|argument): 'a'"
):
data.groupby("key")["data"].transform(incorrect_function, engine="numba", b=1)
with pytest.raises(TypeError, match="missing a required argument: 'a'"):
data.groupby("key")["data"].transform(correct_function, engine="numba", b=1)
# numba signature check after binding
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key").transform(incorrect_function, engine="numba", a=1)
actual = data.groupby("key").transform(correct_function, engine="numba", a=1)
tm.assert_frame_equal(data[["data"]] + 1, actual)
with pytest.raises(NumbaUtilError, match="numba does not support"):
data.groupby("key")["data"].transform(incorrect_function, engine="numba", a=1)
actual = data.groupby("key")["data"].transform(
correct_function, engine="numba", a=1
)
tm.assert_series_equal(data["data"] + 1, actual)
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
def test_numba_vs_cython(jit, frame_or_series, nogil, parallel, nopython, as_index):
pytest.importorskip("numba")
def func(values, index):
return values + 1
if jit:
# Test accepted jitted functions
import numba
func = numba.jit(func)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0, as_index=as_index)
if frame_or_series is Series:
grouped = grouped[1]
result = grouped.transform(func, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.transform(lambda x: x + 1, engine="cython")
tm.assert_equal(result, expected)
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
def test_cache(jit, frame_or_series, nogil, parallel, nopython):
# Test that the functions are cached correctly if we switch functions
pytest.importorskip("numba")
def func_1(values, index):
return values + 1
def func_2(values, index):
return values * 5
if jit:
import numba
func_1 = numba.jit(func_1)
func_2 = numba.jit(func_2)
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
if frame_or_series is Series:
grouped = grouped[1]
result = grouped.transform(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.transform(lambda x: x + 1, engine="cython")
tm.assert_equal(result, expected)
result = grouped.transform(func_2, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.transform(lambda x: x * 5, engine="cython")
tm.assert_equal(result, expected)
# Retest func_1 which should use the cache
result = grouped.transform(func_1, engine="numba", engine_kwargs=engine_kwargs)
expected = grouped.transform(lambda x: x + 1, engine="cython")
tm.assert_equal(result, expected)
def test_use_global_config():
pytest.importorskip("numba")
def func_1(values, index):
return values + 1
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
expected = grouped.transform(func_1, engine="numba")
with option_context("compute.use_numba", True):
result = grouped.transform(func_1, engine=None)
tm.assert_frame_equal(expected, result)
# TODO: Test more than just reductions (e.g. actually test transformations once we have
@pytest.mark.parametrize(
"agg_func", [["min", "max"], "min", {"B": ["min", "max"], "C": "sum"}]
)
def test_string_cython_vs_numba(agg_func, numba_supported_reductions):
pytest.importorskip("numba")
agg_func, kwargs = numba_supported_reductions
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
result = grouped.transform(agg_func, engine="numba", **kwargs)
expected = grouped.transform(agg_func, engine="cython", **kwargs)
tm.assert_frame_equal(result, expected)
result = grouped[1].transform(agg_func, engine="numba", **kwargs)
expected = grouped[1].transform(agg_func, engine="cython", **kwargs)
tm.assert_series_equal(result, expected)
def test_args_not_cached():
# GH 41647
pytest.importorskip("numba")
def sum_last(values, index, n):
return values[-n:].sum()
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
grouped_x = df.groupby("id")["x"]
result = grouped_x.transform(sum_last, 1, engine="numba")
expected = Series([1.0] * 4, name="x")
tm.assert_series_equal(result, expected)
result = grouped_x.transform(sum_last, 2, engine="numba")
expected = Series([2.0] * 4, name="x")
tm.assert_series_equal(result, expected)
def test_index_data_correctly_passed():
# GH 43133
pytest.importorskip("numba")
def f(values, index):
return index - 1
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
result = df.groupby("group").transform(f, engine="numba")
expected = DataFrame([-2.0, -3.0, -4.0], columns=["v"], index=[-1, -2, -3])
tm.assert_frame_equal(result, expected)
def test_index_order_consistency_preserved():
# GH 57069
pytest.importorskip("numba")
def f(values, index):
return values
df = DataFrame(
{"vals": [0.0, 1.0, 2.0, 3.0], "group": [0, 1, 0, 1]}, index=range(3, -1, -1)
)
result = df.groupby("group")["vals"].transform(f, engine="numba")
expected = Series([0.0, 1.0, 2.0, 3.0], index=range(3, -1, -1), name="vals")
tm.assert_series_equal(result, expected)
def test_engine_kwargs_not_cached():
# If the user passes a different set of engine_kwargs don't return the same
# jitted function
pytest.importorskip("numba")
nogil = True
parallel = False
nopython = True
def func_kwargs(values, index):
return nogil + parallel + nopython
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
df = DataFrame({"value": [0, 0, 0]})
result = df.groupby(level=0).transform(
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame({"value": [2.0, 2.0, 2.0]})
tm.assert_frame_equal(result, expected)
nogil = False
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
result = df.groupby(level=0).transform(
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame({"value": [1.0, 1.0, 1.0]})
tm.assert_frame_equal(result, expected)
@pytest.mark.filterwarnings("ignore")
def test_multiindex_one_key(nogil, parallel, nopython):
pytest.importorskip("numba")
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
result = df.groupby("A").transform(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)
expected = DataFrame([{"A": 1, "B": 2, "C": 1.0}]).set_index(["A", "B"])
tm.assert_frame_equal(result, expected)
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
pytest.importorskip("numba")
def numba_func(values, index):
return 1
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
with pytest.raises(NotImplementedError, match="more than 1 grouping labels"):
df.groupby(["A", "B"]).transform(
numba_func, engine="numba", engine_kwargs=engine_kwargs
)
def test_multilabel_numba_vs_cython(numba_supported_reductions):
pytest.importorskip("numba")
reduction, kwargs = numba_supported_reductions
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
}
)
gb = df.groupby(["A", "B"])
res_agg = gb.transform(reduction, engine="numba", **kwargs)
expected_agg = gb.transform(reduction, engine="cython", **kwargs)
tm.assert_frame_equal(res_agg, expected_agg)
def test_multilabel_udf_numba_vs_cython():
pytest.importorskip("numba")
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
}
)
gb = df.groupby(["A", "B"])
result = gb.transform(
lambda values, index: (values - values.min()) / (values.max() - values.min()),
engine="numba",
)
expected = gb.transform(
lambda x: (x - x.min()) / (x.max() - x.min()), engine="cython"
)
tm.assert_frame_equal(result, expected)