forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_scalar.py
300 lines (248 loc) · 9.23 KB
/
test_scalar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
""" test scalar indexing, including at and iat """
from datetime import (
datetime,
timedelta,
)
import itertools
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
Timedelta,
Timestamp,
date_range,
)
import pandas._testing as tm
def generate_indices(f, values=False):
"""
generate the indices
if values is True , use the axis values
is False, use the range
"""
axes = f.axes
if values:
axes = (list(range(len(ax))) for ax in axes)
return itertools.product(*axes)
class TestScalar:
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize("col", ["ints", "uints"])
def test_iat_set_ints(self, kind, col, request):
f = request.getfixturevalue(f"{kind}_{col}")
indices = generate_indices(f, True)
for i in indices:
f.iat[i] = 1
expected = f.values[i]
tm.assert_almost_equal(expected, 1)
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize("col", ["labels", "ts", "floats"])
def test_iat_set_other(self, kind, col, request):
f = request.getfixturevalue(f"{kind}_{col}")
msg = "iAt based indexing can only have integer indexers"
with pytest.raises(ValueError, match=msg):
idx = next(generate_indices(f, False))
f.iat[idx] = 1
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize("col", ["ints", "uints", "labels", "ts", "floats"])
def test_at_set_ints_other(self, kind, col, request):
f = request.getfixturevalue(f"{kind}_{col}")
indices = generate_indices(f, False)
for i in indices:
f.at[i] = 1
expected = f.loc[i]
tm.assert_almost_equal(expected, 1)
class TestAtAndiAT:
# at and iat tests that don't need Base class
def test_float_index_at_iat(self):
ser = Series([1, 2, 3], index=[0.1, 0.2, 0.3])
for el, item in ser.items():
assert ser.at[el] == item
for i in range(len(ser)):
assert ser.iat[i] == i + 1
def test_at_iat_coercion(self):
# as timestamp is not a tuple!
dates = date_range("1/1/2000", periods=8)
df = DataFrame(np.random.randn(8, 4), index=dates, columns=["A", "B", "C", "D"])
s = df["A"]
result = s.at[dates[5]]
xp = s.values[5]
assert result == xp
@pytest.mark.parametrize(
"ser, expected",
[
[
Series(["2014-01-01", "2014-02-02"], dtype="datetime64[ns]"),
Timestamp("2014-02-02"),
],
[
Series(
[86_400_000_000_000, 2 * 86_400_000_000_000],
dtype="timedelta64[ns]",
),
Timedelta("2 days"),
],
],
)
def test_iloc_iat_coercion_datelike(self, indexer_ial, ser, expected):
# GH 7729
# make sure we are boxing the returns
result = indexer_ial(ser)[1]
assert result == expected
def test_imethods_with_dups(self):
# GH6493
# iat/iloc with dups
s = Series(range(5), index=[1, 1, 2, 2, 3], dtype="int64")
result = s.iloc[2]
assert result == 2
result = s.iat[2]
assert result == 2
msg = "index 10 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
s.iat[10]
msg = "index -10 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
s.iat[-10]
result = s.iloc[[2, 3]]
expected = Series([2, 3], [2, 2], dtype="int64")
tm.assert_series_equal(result, expected)
df = s.to_frame()
result = df.iloc[2]
expected = Series(2, index=[0], name=2)
tm.assert_series_equal(result, expected)
result = df.iat[2, 0]
assert result == 2
def test_frame_at_with_duplicate_axes(self):
# GH#33041
arr = np.random.randn(6).reshape(3, 2)
df = DataFrame(arr, columns=["A", "A"])
result = df.at[0, "A"]
expected = df.iloc[0]
tm.assert_series_equal(result, expected)
result = df.T.at["A", 0]
tm.assert_series_equal(result, expected)
# setter
df.at[1, "A"] = 2
expected = Series([2.0, 2.0], index=["A", "A"], name=1)
tm.assert_series_equal(df.iloc[1], expected)
def test_at_getitem_dt64tz_values(self):
# gh-15822
df = DataFrame(
{
"name": ["John", "Anderson"],
"date": [
Timestamp(2017, 3, 13, 13, 32, 56),
Timestamp(2017, 2, 16, 12, 10, 3),
],
}
)
df["date"] = df["date"].dt.tz_localize("Asia/Shanghai")
expected = Timestamp("2017-03-13 13:32:56+0800", tz="Asia/Shanghai")
result = df.loc[0, "date"]
assert result == expected
result = df.at[0, "date"]
assert result == expected
def test_mixed_index_at_iat_loc_iloc_series(self):
# GH 19860
s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
for el, item in s.items():
assert s.at[el] == s.loc[el] == item
for i in range(len(s)):
assert s.iat[i] == s.iloc[i] == i + 1
with pytest.raises(KeyError, match="^4$"):
s.at[4]
with pytest.raises(KeyError, match="^4$"):
s.loc[4]
def test_mixed_index_at_iat_loc_iloc_dataframe(self):
# GH 19860
df = DataFrame(
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], columns=["a", "b", "c", 1, 2]
)
for rowIdx, row in df.iterrows():
for el, item in row.items():
assert df.at[rowIdx, el] == df.loc[rowIdx, el] == item
for row in range(2):
for i in range(5):
assert df.iat[row, i] == df.iloc[row, i] == row * 5 + i
with pytest.raises(KeyError, match="^3$"):
df.at[0, 3]
with pytest.raises(KeyError, match="^3$"):
df.loc[0, 3]
def test_iat_setter_incompatible_assignment(self):
# GH 23236
result = DataFrame({"a": [0, 1], "b": [4, 5]})
result.iat[0, 0] = None
expected = DataFrame({"a": [None, 1], "b": [4, 5]})
tm.assert_frame_equal(result, expected)
def test_iat_dont_wrap_object_datetimelike():
# GH#32809 .iat calls go through DataFrame._get_value, should not
# call maybe_box_datetimelike
dti = date_range("2016-01-01", periods=3)
tdi = dti - dti
ser = Series(dti.to_pydatetime(), dtype=object)
ser2 = Series(tdi.to_pytimedelta(), dtype=object)
df = DataFrame({"A": ser, "B": ser2})
assert (df.dtypes == object).all()
for result in [df.at[0, "A"], df.iat[0, 0], df.loc[0, "A"], df.iloc[0, 0]]:
assert result is ser[0]
assert isinstance(result, datetime)
assert not isinstance(result, Timestamp)
for result in [df.at[1, "B"], df.iat[1, 1], df.loc[1, "B"], df.iloc[1, 1]]:
assert result is ser2[1]
assert isinstance(result, timedelta)
assert not isinstance(result, Timedelta)
def test_at_with_tuple_index_get():
# GH 26989
# DataFrame.at getter works with Index of tuples
df = DataFrame({"a": [1, 2]}, index=[(1, 2), (3, 4)])
assert df.index.nlevels == 1
assert df.at[(1, 2), "a"] == 1
# Series.at getter works with Index of tuples
series = df["a"]
assert series.index.nlevels == 1
assert series.at[(1, 2)] == 1
def test_at_with_tuple_index_set():
# GH 26989
# DataFrame.at setter works with Index of tuples
df = DataFrame({"a": [1, 2]}, index=[(1, 2), (3, 4)])
assert df.index.nlevels == 1
df.at[(1, 2), "a"] = 2
assert df.at[(1, 2), "a"] == 2
# Series.at setter works with Index of tuples
series = df["a"]
assert series.index.nlevels == 1
series.at[1, 2] = 3
assert series.at[1, 2] == 3
class TestMultiIndexScalar:
def test_multiindex_at_get(self):
# GH 26989
# DataFrame.at and DataFrame.loc getter works with MultiIndex
df = DataFrame({"a": [1, 2]}, index=[[1, 2], [3, 4]])
assert df.index.nlevels == 2
assert df.at[(1, 3), "a"] == 1
assert df.loc[(1, 3), "a"] == 1
# Series.at and Series.loc getter works with MultiIndex
series = df["a"]
assert series.index.nlevels == 2
assert series.at[1, 3] == 1
assert series.loc[1, 3] == 1
def test_multiindex_at_set(self):
# GH 26989
# DataFrame.at and DataFrame.loc setter works with MultiIndex
df = DataFrame({"a": [1, 2]}, index=[[1, 2], [3, 4]])
assert df.index.nlevels == 2
df.at[(1, 3), "a"] = 3
assert df.at[(1, 3), "a"] == 3
df.loc[(1, 3), "a"] = 4
assert df.loc[(1, 3), "a"] == 4
# Series.at and Series.loc setter works with MultiIndex
series = df["a"]
assert series.index.nlevels == 2
series.at[1, 3] = 5
assert series.at[1, 3] == 5
series.loc[1, 3] = 6
assert series.loc[1, 3] == 6
def test_multiindex_at_get_one_level(self):
# GH#38053
s2 = Series((0, 1), index=[[False, True]])
result = s2.at[False]
assert result == 0