forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_float.py
71 lines (54 loc) · 2.41 KB
/
test_float.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Tests that work on both the Python and C engines but do not have a
specific classification into the other test modules.
"""
from io import StringIO
import numpy as np
import pytest
from pandas.compat import is_platform_linux
from pandas import DataFrame
import pandas._testing as tm
pytestmark = pytest.mark.filterwarnings(
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
)
xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail")
skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
@skip_pyarrow # ParserError: CSV parse error: Empty CSV file or block
def test_float_parser(all_parsers):
# see gh-9565
parser = all_parsers
data = "45e-1,4.5,45.,inf,-inf"
result = parser.read_csv(StringIO(data), header=None)
expected = DataFrame([[float(s) for s in data.split(",")]])
tm.assert_frame_equal(result, expected)
def test_scientific_no_exponent(all_parsers_all_precisions):
# see gh-12215
df = DataFrame.from_dict({"w": ["2e"], "x": ["3E"], "y": ["42e"], "z": ["632E"]})
data = df.to_csv(index=False)
parser, precision = all_parsers_all_precisions
df_roundtrip = parser.read_csv(StringIO(data), float_precision=precision)
tm.assert_frame_equal(df_roundtrip, df)
@pytest.mark.parametrize("neg_exp", [-617, -100000, -99999999999999999])
def test_very_negative_exponent(all_parsers_all_precisions, neg_exp):
# GH#38753
parser, precision = all_parsers_all_precisions
data = f"data\n10E{neg_exp}"
result = parser.read_csv(StringIO(data), float_precision=precision)
expected = DataFrame({"data": [0.0]})
tm.assert_frame_equal(result, expected)
@xfail_pyarrow # AssertionError: Attributes of DataFrame.iloc[:, 0] are different
@pytest.mark.parametrize("exp", [999999999999999999, -999999999999999999])
def test_too_many_exponent_digits(all_parsers_all_precisions, exp, request):
# GH#38753
parser, precision = all_parsers_all_precisions
data = f"data\n10E{exp}"
result = parser.read_csv(StringIO(data), float_precision=precision)
if precision == "round_trip":
if exp == 999999999999999999 and is_platform_linux():
mark = pytest.mark.xfail(reason="GH38794, on Linux gives object result")
request.applymarker(mark)
value = np.inf if exp > 0 else 0.0
expected = DataFrame({"data": [value]})
else:
expected = DataFrame({"data": [f"10E{exp}"]})
tm.assert_frame_equal(result, expected)