forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathto_dict.py
289 lines (248 loc) · 8.96 KB
/
to_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Literal,
overload,
)
import warnings
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.cast import maybe_box_native
from pandas.core.dtypes.dtypes import (
BaseMaskedDtype,
ExtensionDtype,
)
from pandas.core import common as com
if TYPE_CHECKING:
from collections.abc import Generator
from pandas._typing import MutableMappingT
from pandas import DataFrame
def create_data_for_split(
df: DataFrame, are_all_object_dtype_cols: bool, object_dtype_indices: list[int]
) -> Generator[list, None, None]:
"""
Simple helper method to create data for to ``to_dict(orient="split")``
to create the main output data
"""
if are_all_object_dtype_cols:
for tup in df.itertuples(index=False, name=None):
yield list(map(maybe_box_native, tup))
else:
for tup in df.itertuples(index=False, name=None):
data = list(tup)
if object_dtype_indices:
# If we have object_dtype_cols, apply maybe_box_naive after
# for perf
for i in object_dtype_indices:
data[i] = maybe_box_native(data[i])
yield data
@overload
def to_dict(
df: DataFrame,
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
*,
into: type[MutableMappingT] | MutableMappingT,
index: bool = ...,
) -> MutableMappingT:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["records"],
*,
into: type[MutableMappingT] | MutableMappingT,
index: bool = ...,
) -> list[MutableMappingT]:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
*,
into: type[dict] = ...,
index: bool = ...,
) -> dict:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["records"],
*,
into: type[dict] = ...,
index: bool = ...,
) -> list[dict]:
...
# error: Incompatible default for argument "into" (default has type "type[dict
# [Any, Any]]", argument has type "type[MutableMappingT] | MutableMappingT")
def to_dict(
df: DataFrame,
orient: Literal[
"dict", "list", "series", "split", "tight", "records", "index"
] = "dict",
*,
into: type[MutableMappingT] | MutableMappingT = dict, # type: ignore[assignment]
index: bool = True,
) -> MutableMappingT | list[MutableMappingT]:
"""
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'tight' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values],
'index_names' -> [index.names], 'column_names' -> [column.names]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
.. versionadded:: 1.4.0
'tight' as an allowed value for the ``orient`` argument
into : class, default dict
The collections.abc.MutableMapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
index : bool, default True
Whether to include the index item (and index_names item if `orient`
is 'tight') in the returned dictionary. Can only be ``False``
when `orient` is 'split' or 'tight'.
.. versionadded:: 2.0.0
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.MutableMapping object representing the
DataFrame. The resulting transformation depends on the `orient` parameter.
"""
if not df.columns.is_unique:
warnings.warn(
"DataFrame columns are not unique, some columns will be omitted.",
UserWarning,
stacklevel=find_stack_level(),
)
# GH16122
into_c = com.standardize_mapping(into)
# error: Incompatible types in assignment (expression has type "str",
# variable has type "Literal['dict', 'list', 'series', 'split', 'tight',
# 'records', 'index']")
orient = orient.lower() # type: ignore[assignment]
if not index and orient not in ["split", "tight"]:
raise ValueError(
"'index=False' is only valid when 'orient' is 'split' or 'tight'"
)
if orient == "series":
# GH46470 Return quickly if orient series to avoid creating dtype objects
return into_c((k, v) for k, v in df.items())
if orient == "dict":
return into_c((k, v.to_dict(into=into)) for k, v in df.items())
box_native_indices = [
i
for i, col_dtype in enumerate(df.dtypes.values)
if col_dtype == np.dtype(object) or isinstance(col_dtype, ExtensionDtype)
]
are_all_object_dtype_cols = len(box_native_indices) == len(df.dtypes)
if orient == "list":
object_dtype_indices_as_set: set[int] = set(box_native_indices)
box_na_values = (
lib.no_default
if not isinstance(col_dtype, BaseMaskedDtype)
else libmissing.NA
for col_dtype in df.dtypes.values
)
return into_c(
(
k,
list(map(maybe_box_native, v.to_numpy(na_value=box_na_value).tolist()))
if i in object_dtype_indices_as_set
else v.to_numpy().tolist(),
)
for i, (box_na_value, (k, v)) in enumerate(zip(box_na_values, df.items()))
)
elif orient == "split":
data = list(
create_data_for_split(df, are_all_object_dtype_cols, box_native_indices)
)
return into_c(
((("index", df.index.tolist()),) if index else ())
+ (
("columns", df.columns.tolist()),
("data", data),
)
)
elif orient == "tight":
return into_c(
((("index", df.index.tolist()),) if index else ())
+ (
("columns", df.columns.tolist()),
(
"data",
[
list(map(maybe_box_native, t))
for t in df.itertuples(index=False, name=None)
],
),
)
+ ((("index_names", list(df.index.names)),) if index else ())
+ (("column_names", list(df.columns.names)),)
)
elif orient == "records":
columns = df.columns.tolist()
if are_all_object_dtype_cols:
return [
into_c(zip(columns, map(maybe_box_native, row)))
for row in df.itertuples(index=False, name=None)
]
else:
data = [
into_c(zip(columns, t)) for t in df.itertuples(index=False, name=None)
]
if box_native_indices:
object_dtype_indices_as_set = set(box_native_indices)
object_dtype_cols = {
col
for i, col in enumerate(df.columns)
if i in object_dtype_indices_as_set
}
for row in data:
for col in object_dtype_cols:
row[col] = maybe_box_native(row[col])
return data
elif orient == "index":
if not df.index.is_unique:
raise ValueError("DataFrame index must be unique for orient='index'.")
columns = df.columns.tolist()
if are_all_object_dtype_cols:
return into_c(
(t[0], dict(zip(df.columns, map(maybe_box_native, t[1:]))))
for t in df.itertuples(name=None)
)
elif box_native_indices:
object_dtype_indices_as_set = set(box_native_indices)
return into_c(
(
t[0],
{
column: maybe_box_native(v)
if i in object_dtype_indices_as_set
else v
for i, (column, v) in enumerate(zip(columns, t[1:]))
},
)
for t in df.itertuples(name=None)
)
else:
return into_c(
(t[0], dict(zip(columns, t[1:]))) for t in df.itertuples(name=None)
)
else:
raise ValueError(f"orient '{orient}' not understood")