forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_string.py
209 lines (146 loc) · 5.95 KB
/
test_string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import string
import numpy as np
import pytest
from pandas.compat import pa_version_under6p0
from pandas.errors import PerformanceWarning
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ArrowStringArray
from pandas.core.arrays.string_ import StringDtype
from pandas.tests.extension import base
def split_array(arr):
if arr.dtype.storage != "pyarrow":
pytest.skip("only applicable for pyarrow chunked array n/a")
def _split_array(arr):
import pyarrow as pa
arrow_array = arr._data
split = len(arrow_array) // 2
arrow_array = pa.chunked_array(
[*arrow_array[:split].chunks, *arrow_array[split:].chunks]
)
assert arrow_array.num_chunks == 2
return type(arr)(arrow_array)
return _split_array(arr)
@pytest.fixture(params=[True, False])
def chunked(request):
return request.param
@pytest.fixture
def dtype(string_storage):
return StringDtype(storage=string_storage)
@pytest.fixture
def data(dtype, chunked):
strings = np.random.choice(list(string.ascii_letters), size=100)
while strings[0] == strings[1]:
strings = np.random.choice(list(string.ascii_letters), size=100)
arr = dtype.construct_array_type()._from_sequence(strings)
return split_array(arr) if chunked else arr
@pytest.fixture
def data_missing(dtype, chunked):
"""Length 2 array with [NA, Valid]"""
arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def data_for_sorting(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def data_missing_for_sorting(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"])
return split_array(arr) if chunked else arr
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype, chunked):
arr = dtype.construct_array_type()._from_sequence(
["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"]
)
return split_array(arr) if chunked else arr
class TestDtype(base.BaseDtypeTests):
def test_eq_with_str(self, dtype):
assert dtype == f"string[{dtype.storage}]"
super().test_eq_with_str(dtype)
class TestInterface(base.BaseInterfaceTests):
def test_view(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_view(data)
class TestConstructors(base.BaseConstructorsTests):
def test_from_dtype(self, data):
# base test uses string representation of dtype
pass
class TestReshaping(base.BaseReshapingTests):
def test_transpose(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_transpose(data)
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
def test_setitem_preserves_views(self, data, request):
if data.dtype.storage == "pyarrow":
mark = pytest.mark.xfail(reason="not implemented")
request.node.add_marker(mark)
super().test_setitem_preserves_views(data)
class TestIndex(base.BaseIndexTests):
pass
class TestMissing(base.BaseMissingTests):
def test_dropna_array(self, data_missing):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under6p0 and data_missing.dtype.storage == "pyarrow",
):
result = data_missing.dropna()
expected = data_missing[[1]]
self.assert_extension_array_equal(result, expected)
class TestNoReduce(base.BaseNoReduceTests):
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
op_name = all_numeric_reductions
if op_name in ["min", "max"]:
return None
ser = pd.Series(data)
with pytest.raises(TypeError):
getattr(ser, op_name)(skipna=skipna)
class TestMethods(base.BaseMethodsTests):
pass
class TestCasting(base.BaseCastingTests):
pass
class TestComparisonOps(base.BaseComparisonOpsTests):
def _compare_other(self, ser, data, op, other):
op_name = f"__{op.__name__}__"
result = getattr(ser, op_name)(other)
expected = getattr(ser.astype(object), op_name)(other).astype("boolean")
self.assert_series_equal(result, expected)
def test_compare_scalar(self, data, comparison_op):
ser = pd.Series(data)
self._compare_other(ser, data, comparison_op, "abc")
class TestParsing(base.BaseParsingTests):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestGroupBy(base.BaseGroupbyTests):
def test_groupby_extension_transform(self, data_for_grouping, request):
super().test_groupby_extension_transform(data_for_grouping)
class Test2DCompat(base.Dim2CompatTests):
@pytest.fixture(autouse=True)
def arrow_not_supported(self, data, request):
if isinstance(data, ArrowStringArray):
mark = pytest.mark.xfail(
reason="2D support not implemented for ArrowStringArray"
)
request.node.add_marker(mark)