forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_dataframe.py
230 lines (191 loc) · 8.66 KB
/
test_dataframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
concat,
)
import pandas._testing as tm
class TestDataFrameConcat:
def test_concat_multiple_frames_dtypes(self):
# GH#2759
df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
results = concat((df1, df2), axis=1).dtypes
expected = Series(
[np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
index=["foo", "bar", 0, 1],
)
tm.assert_series_equal(results, expected)
def test_concat_tuple_keys(self):
# GH#14438
df1 = DataFrame(np.ones((2, 2)), columns=list("AB"))
df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
expected = DataFrame(
{
"A": {
("bee", "bah", 0): 1.0,
("bee", "bah", 1): 1.0,
("bee", "boo", 0): 2.0,
("bee", "boo", 1): 2.0,
("bee", "boo", 2): 2.0,
},
"B": {
("bee", "bah", 0): 1.0,
("bee", "bah", 1): 1.0,
("bee", "boo", 0): 2.0,
("bee", "boo", 1): 2.0,
("bee", "boo", 2): 2.0,
},
}
)
tm.assert_frame_equal(results, expected)
def test_concat_named_keys(self):
# GH#14252
df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
index = Index(["a", "b"], name="baz")
concatted_named_from_keys = concat([df, df], keys=index)
expected_named = DataFrame(
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
)
tm.assert_frame_equal(concatted_named_from_keys, expected_named)
index_no_name = Index(["a", "b"], name=None)
concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"])
tm.assert_frame_equal(concatted_named_from_names, expected_named)
concatted_unnamed = concat([df, df], keys=index_no_name)
expected_unnamed = DataFrame(
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
)
tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
def test_concat_axis_parameter(self):
# GH#14369
df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2))
df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2))
# Index/row/0 DataFrame
expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
concatted_index = concat([df1, df2], axis="index")
tm.assert_frame_equal(concatted_index, expected_index)
concatted_row = concat([df1, df2], axis="rows")
tm.assert_frame_equal(concatted_row, expected_index)
concatted_0 = concat([df1, df2], axis=0)
tm.assert_frame_equal(concatted_0, expected_index)
# Columns/1 DataFrame
expected_columns = DataFrame(
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
)
concatted_columns = concat([df1, df2], axis="columns")
tm.assert_frame_equal(concatted_columns, expected_columns)
concatted_1 = concat([df1, df2], axis=1)
tm.assert_frame_equal(concatted_1, expected_columns)
series1 = Series([0.1, 0.2])
series2 = Series([0.3, 0.4])
# Index/row/0 Series
expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
concatted_index_series = concat([series1, series2], axis="index")
tm.assert_series_equal(concatted_index_series, expected_index_series)
concatted_row_series = concat([series1, series2], axis="rows")
tm.assert_series_equal(concatted_row_series, expected_index_series)
concatted_0_series = concat([series1, series2], axis=0)
tm.assert_series_equal(concatted_0_series, expected_index_series)
# Columns/1 Series
expected_columns_series = DataFrame(
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
)
concatted_columns_series = concat([series1, series2], axis="columns")
tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
concatted_1_series = concat([series1, series2], axis=1)
tm.assert_frame_equal(concatted_1_series, expected_columns_series)
# Testing ValueError
with pytest.raises(ValueError, match="No axis named"):
concat([series1, series2], axis="something")
def test_concat_numerical_names(self):
# GH#15262, GH#12223
df = DataFrame(
{"col": range(9)},
dtype="int32",
index=(
pd.MultiIndex.from_product(
[["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
)
),
)
result = concat((df.iloc[:2, :], df.iloc[-2:, :]))
expected = DataFrame(
{"col": [0, 1, 7, 8]},
dtype="int32",
index=pd.MultiIndex.from_tuples(
[("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
),
)
tm.assert_frame_equal(result, expected)
def test_concat_astype_dup_col(self):
# GH#23049
df = DataFrame([{"a": "b"}])
df = concat([df, df], axis=1)
result = df.astype("category")
expected = DataFrame(
np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
).astype("category")
tm.assert_frame_equal(result, expected)
def test_concat_dataframe_keys_bug(self, sort):
t1 = DataFrame(
{"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))}
)
t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))})
# it works
result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort)
assert list(result.columns) == [("t1", "value"), ("t2", "value")]
def test_concat_bool_with_int(self):
# GH#42092 we may want to change this to return object, but that
# would need a deprecation
df1 = DataFrame(Series([True, False, True, True], dtype="bool"))
df2 = DataFrame(Series([1, 0, 1], dtype="int64"))
result = concat([df1, df2])
expected = concat([df1.astype("int64"), df2])
tm.assert_frame_equal(result, expected)
def test_concat_duplicates_in_index_with_keys(self):
# GH#42651
index = [1, 1, 3]
data = [1, 2, 3]
df = DataFrame(data=data, index=index)
result = concat([df], keys=["A"], names=["ID", "date"])
mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"])
expected = DataFrame(data=data, index=mi)
tm.assert_frame_equal(result, expected)
tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date"))
@pytest.mark.parametrize("ignore_index", [True, False])
@pytest.mark.parametrize("order", ["C", "F"])
@pytest.mark.parametrize("axis", [0, 1])
def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write):
# based on asv ConcatDataFrames
df = DataFrame(np.zeros((10, 5), dtype=np.float32, order=order))
res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True)
if not using_copy_on_write:
for arr in res._iter_column_arrays():
for arr2 in df._iter_column_arrays():
assert not np.shares_memory(arr, arr2)
def test_outer_sort_columns(self):
# GH#47127
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
df2 = DataFrame({"A": [100]})
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]})
tm.assert_frame_equal(result, expected)
def test_inner_sort_columns(self):
# GH#47127
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
df2 = DataFrame({"A": [100], 0: 2})
result = concat([df1, df2], ignore_index=True, join="inner", sort=True)
expected = DataFrame({0: [1, 2], "A": [0, 100]})
tm.assert_frame_equal(result, expected)
def test_sort_columns_one_df(self):
# GH#47127
df1 = DataFrame({"A": [100], 0: 2})
result = concat([df1], ignore_index=True, join="inner", sort=True)
expected = DataFrame({0: [2], "A": [100]})
tm.assert_frame_equal(result, expected)