forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_base.py
261 lines (198 loc) · 8.18 KB
/
test_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from datetime import datetime
import numpy as np
import pytest
from pandas import (
DataFrame,
NaT,
PeriodIndex,
Series,
)
import pandas._testing as tm
from pandas.core.groupby.groupby import DataError
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import period_range
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.core.resample import _asfreq_compat
# a fixture value can be overridden by the test parameter value. Note that the
# value of the fixture can be overridden this way even if the test doesn't use
# it directly (doesn't mention it in the function prototype).
# see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa:E501
# in this module we override the fixture values defined in conftest.py
# tuples of '_index_factory,_series_name,_index_start,_index_end'
DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10))
PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10))
TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day")
all_ts = pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end",
[DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE],
)
@pytest.fixture
def create_index(_index_factory):
def _create_index(*args, **kwargs):
"""return the _index_factory created using the args, kwargs"""
return _index_factory(*args, **kwargs)
return _create_index
@pytest.mark.parametrize("freq", ["2D", "1H"])
@pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
)
def test_asfreq(series_and_frame, freq, create_index):
obj = series_and_frame
result = obj.resample(freq).asfreq()
new_index = create_index(obj.index[0], obj.index[-1], freq=freq)
expected = obj.reindex(new_index)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
)
def test_asfreq_fill_value(series, create_index):
# test for fill value during resampling, issue 3715
ser = series
result = ser.resample("1H").asfreq()
new_index = create_index(ser.index[0], ser.index[-1], freq="1H")
expected = ser.reindex(new_index)
tm.assert_series_equal(result, expected)
frame = ser.to_frame("value")
frame.iloc[1] = None
result = frame.resample("1H").asfreq(fill_value=4.0)
new_index = create_index(frame.index[0], frame.index[-1], freq="1H")
expected = frame.reindex(new_index, fill_value=4.0)
tm.assert_frame_equal(result, expected)
@all_ts
def test_resample_interpolate(frame):
# # 12925
df = frame
tm.assert_frame_equal(
df.resample("1T").asfreq().interpolate(), df.resample("1T").interpolate()
)
def test_raises_on_non_datetimelike_index():
# this is a non datetimelike index
xp = DataFrame()
msg = (
"Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, "
"but got an instance of 'Index'"
)
with pytest.raises(TypeError, match=msg):
xp.resample("A").mean()
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_resample_empty_series(freq, empty_series_dti, resample_method, request):
# GH12771 & GH12868
if resample_method == "ohlc" and isinstance(empty_series_dti.index, PeriodIndex):
request.node.add_marker(
pytest.mark.xfail(
reason=f"GH13083: {resample_method} fails for PeriodIndex"
)
)
ser = empty_series_dti
result = getattr(ser.resample(freq), resample_method)()
expected = ser.copy()
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
tm.assert_series_equal(result, expected, check_dtype=False)
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_resample_nat_index_series(request, freq, series, resample_method):
# GH39227
if freq == "M":
request.node.add_marker(pytest.mark.xfail(reason="Don't know why this fails"))
ser = series.copy()
ser.index = PeriodIndex([NaT] * len(ser), freq=freq)
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
expected = DataFrame(
[], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"]
)
tm.assert_frame_equal(result, expected, check_dtype=False)
else:
expected = ser[:0].copy()
tm.assert_series_equal(result, expected, check_dtype=False)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
@pytest.mark.parametrize("resample_method", ["count", "size"])
def test_resample_count_empty_series(freq, empty_series_dti, resample_method):
# GH28427
result = getattr(empty_series_dti.resample(freq), resample_method)()
index = _asfreq_compat(empty_series_dti.index, freq)
expected = Series([], dtype="int64", index=index, name=empty_series_dti.name)
tm.assert_series_equal(result, expected)
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method):
# GH13212
df = empty_frame_dti
# count retains dimensions too
result = getattr(df.resample(freq), resample_method)()
if resample_method != "size":
expected = df.copy()
else:
# GH14962
expected = Series([], dtype=object)
expected.index = _asfreq_compat(df.index, freq)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
tm.assert_almost_equal(result, expected, check_dtype=False)
# test size for GH13212 (currently stays as df)
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_resample_count_empty_dataframe(freq, empty_frame_dti):
# GH28427
empty_frame_dti["a"] = []
result = empty_frame_dti.resample(freq).count()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = DataFrame({"a": []}, dtype="int64", index=index)
tm.assert_frame_equal(result, expected)
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_resample_size_empty_dataframe(freq, empty_frame_dti):
# GH28427
empty_frame_dti["a"] = []
result = empty_frame_dti.resample(freq).size()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = Series([], dtype="int64", index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("index", tm.all_timeseries_index_generator(0))
@pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"])
def test_resample_empty_dtypes(index, dtype, resample_method):
# Empty series were sometimes causing a segfault (for the functions
# with Cython bounds-checking disabled) or an IndexError. We just run
# them to ensure they no longer do. (GH #10228)
empty_series_dti = Series([], index, dtype)
try:
getattr(empty_series_dti.resample("d"), resample_method)()
except DataError:
# Ignore these since some combinations are invalid
# (ex: doing mean with dtype of np.object_)
pass
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"])
def test_apply_to_empty_series(empty_series_dti, freq):
# GH 14313
ser = empty_series_dti
result = ser.resample(freq).apply(lambda x: 1)
expected = ser.resample(freq).apply(np.sum)
tm.assert_series_equal(result, expected, check_dtype=False)
@all_ts
def test_resampler_is_iterable(series):
# GH 15314
freq = "H"
tg = Grouper(freq=freq, convention="start")
grouped = series.groupby(tg)
resampled = series.resample(freq)
for (rk, rv), (gk, gv) in zip(resampled, grouped):
assert rk == gk
tm.assert_series_equal(rv, gv)
@all_ts
def test_resample_quantile(series):
# GH 15023
ser = series
q = 0.75
freq = "H"
result = ser.resample(freq).quantile(q)
expected = ser.resample(freq).agg(lambda x: x.quantile(q)).rename(ser.name)
tm.assert_series_equal(result, expected)