forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbinary_ops.py
110 lines (76 loc) · 2.92 KB
/
binary_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
from pandas import DataFrame, Series, date_range
try:
import pandas.core.computation.expressions as expr
except ImportError:
import pandas.computation.expressions as expr
class Ops(object):
goal_time = 0.2
params = [[True, False], ['default', 1]]
param_names = ['use_numexpr', 'threads']
def setup(self, use_numexpr, threads):
np.random.seed(1234)
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
if threads != 'default':
expr.set_numexpr_threads(threads)
if not use_numexpr:
expr.set_use_numexpr(False)
def time_frame_add(self, use_numexpr, threads):
self.df + self.df2
def time_frame_mult(self, use_numexpr, threads):
self.df * self.df2
def time_frame_multi_and(self, use_numexpr, threads):
self.df[(self.df > 0) & (self.df2 > 0)]
def time_frame_comparison(self, use_numexpr, threads):
self.df > self.df2
def teardown(self, use_numexpr, threads):
expr.set_use_numexpr(True)
expr.set_numexpr_threads()
class Ops2(object):
goal_time = 0.2
def setup(self):
N = 10**3
np.random.seed(1234)
self.df = DataFrame(np.random.randn(N, N))
self.df2 = DataFrame(np.random.randn(N, N))
self.df_int = DataFrame(np.random.randint(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(N, N)))
self.df2_int = DataFrame(np.random.randint(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(N, N)))
# Division
def time_frame_float_div(self):
self.df // self.df2
def time_frame_float_div_by_zero(self):
self.df / 0
def time_frame_float_floor_by_zero(self):
self.df // 0
def time_frame_int_div_by_zero(self):
self.df_int / 0
# Modulo
def time_frame_int_mod(self):
self.df_int % self.df2_int
def time_frame_float_mod(self):
self.df % self.df2
class Timeseries(object):
goal_time = 0.2
params = [None, 'US/Eastern']
param_names = ['tz']
def setup(self, tz):
self.N = 10**6
self.halfway = ((self.N // 2) - 1)
self.s = Series(date_range('20010101', periods=self.N, freq='T',
tz=tz))
self.ts = self.s[self.halfway]
self.s2 = Series(date_range('20010101', periods=self.N, freq='s',
tz=tz))
def time_series_timestamp_compare(self, tz):
self.s <= self.ts
def time_timestamp_series_compare(self, tz):
self.ts >= self.s
def time_timestamp_ops_diff(self, tz):
self.s2.diff()
def time_timestamp_ops_diff_with_shift(self, tz):
self.s - self.s.shift()