forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpackers.py
318 lines (217 loc) · 9.01 KB
/
packers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from .pandas_vb_common import *
from numpy.random import randint
import pandas as pd
from collections import OrderedDict
from pandas.compat import BytesIO
import sqlite3
import os
from sqlalchemy import create_engine
import numpy as np
from random import randrange
class _Packers(object):
goal_time = 0.2
def _setup(self):
self.f = '__test__.msg'
self.N = 100000
self.C = 5
self.index = date_range('20000101', periods=self.N, freq='H')
self.df = DataFrame(dict(('float{0}'.format(i), randn(self.N)) for i in range(self.C)), index=self.index)
self.df2 = self.df.copy()
self.df2['object'] = [('%08x' % randrange((16 ** 8))) for _ in range(self.N)]
self.remove(self.f)
def remove(self, f):
try:
os.remove(self.f)
except:
pass
class Packers(_Packers):
goal_time = 0.2
def setup(self):
self._setup()
self.df.to_csv(self.f)
def time_packers_read_csv(self):
pd.read_csv(self.f)
class packers_read_excel(_Packers):
goal_time = 0.2
def setup(self):
self._setup()
self.bio = BytesIO()
self.writer = pd.io.excel.ExcelWriter(self.bio, engine='xlsxwriter')
self.df[:2000].to_excel(self.writer)
self.writer.save()
def time_packers_read_excel(self):
self.bio.seek(0)
pd.read_excel(self.bio)
class packers_read_hdf_store(_Packers):
goal_time = 0.2
def setup(self):
self._setup()
self.df2.to_hdf(self.f, 'df')
def time_packers_read_hdf_store(self):
pd.read_hdf(self.f, 'df')
class packers_read_hdf_table(_Packers):
def setup(self):
self._setup()
self.df2.to_hdf(self.f, 'df', format='table')
def time_packers_read_hdf_table(self):
pd.read_hdf(self.f, 'df')
class packers_read_json(_Packers):
def setup(self):
self._setup()
self.df.to_json(self.f, orient='split')
self.df.index = np.arange(self.N)
def time_packers_read_json(self):
pd.read_json(self.f, orient='split')
class packers_read_json_date_index(_Packers):
def setup(self):
self._setup()
self.remove(self.f)
self.df.to_json(self.f, orient='split')
def time_packers_read_json_date_index(self):
pd.read_json(self.f, orient='split')
class packers_read_pack(_Packers):
def setup(self):
self._setup()
self.df2.to_msgpack(self.f)
def time_packers_read_pack(self):
pd.read_msgpack(self.f)
class packers_read_pickle(_Packers):
def setup(self):
self._setup()
self.df2.to_pickle(self.f)
def time_packers_read_pickle(self):
pd.read_pickle(self.f)
class packers_read_sql(_Packers):
def setup(self):
self._setup()
self.engine = create_engine('sqlite:///:memory:')
self.df2.to_sql('table', self.engine, if_exists='replace')
def time_packers_read_sql(self):
pd.read_sql_table('table', self.engine)
class packers_read_stata(_Packers):
def setup(self):
self._setup()
self.df.to_stata(self.f, {'index': 'tc', })
def time_packers_read_stata(self):
pd.read_stata(self.f)
class packers_read_stata_with_validation(_Packers):
def setup(self):
self._setup()
self.df['int8_'] = [randint(np.iinfo(np.int8).min, (np.iinfo(np.int8).max - 27)) for _ in range(self.N)]
self.df['int16_'] = [randint(np.iinfo(np.int16).min, (np.iinfo(np.int16).max - 27)) for _ in range(self.N)]
self.df['int32_'] = [randint(np.iinfo(np.int32).min, (np.iinfo(np.int32).max - 27)) for _ in range(self.N)]
self.df['float32_'] = np.array(randn(self.N), dtype=np.float32)
self.df.to_stata(self.f, {'index': 'tc', })
def time_packers_read_stata_with_validation(self):
pd.read_stata(self.f)
class packers_read_sas(_Packers):
def setup(self):
testdir = os.path.join(os.path.dirname(__file__), '..', '..',
'pandas', 'tests', 'io', 'sas')
if not os.path.exists(testdir):
testdir = os.path.join(os.path.dirname(__file__), '..', '..',
'pandas', 'io', 'tests', 'sas')
self.f = os.path.join(testdir, 'data', 'test1.sas7bdat')
self.f2 = os.path.join(testdir, 'data', 'paxraw_d_short.xpt')
def time_read_sas7bdat(self):
pd.read_sas(self.f, format='sas7bdat')
def time_read_xport(self):
pd.read_sas(self.f2, format='xport')
class CSV(_Packers):
def setup(self):
self._setup()
def time_write_csv(self):
self.df.to_csv(self.f)
def teardown(self):
self.remove(self.f)
class Excel(_Packers):
def setup(self):
self._setup()
self.bio = BytesIO()
def time_write_excel_openpyxl(self):
self.bio.seek(0)
self.writer = pd.io.excel.ExcelWriter(self.bio, engine='openpyxl')
self.df[:2000].to_excel(self.writer)
self.writer.save()
def time_write_excel_xlsxwriter(self):
self.bio.seek(0)
self.writer = pd.io.excel.ExcelWriter(self.bio, engine='xlsxwriter')
self.df[:2000].to_excel(self.writer)
self.writer.save()
def time_write_excel_xlwt(self):
self.bio.seek(0)
self.writer = pd.io.excel.ExcelWriter(self.bio, engine='xlwt')
self.df[:2000].to_excel(self.writer)
self.writer.save()
class HDF(_Packers):
def setup(self):
self._setup()
def time_write_hdf_store(self):
self.df2.to_hdf(self.f, 'df')
def time_write_hdf_table(self):
self.df2.to_hdf(self.f, 'df', table=True)
def teardown(self):
self.remove(self.f)
class JSON(_Packers):
def setup(self):
self._setup()
self.df_date = self.df.copy()
self.df.index = np.arange(self.N)
self.cols = [(lambda i: ('{0}_timedelta'.format(i), [pd.Timedelta(('%d seconds' % randrange(1000000.0))) for _ in range(self.N)])), (lambda i: ('{0}_int'.format(i), randint(100000000.0, size=self.N))), (lambda i: ('{0}_timestamp'.format(i), [pd.Timestamp((1418842918083256000 + randrange(1000000000.0, 1e+18, 200))) for _ in range(self.N)]))]
self.df_mixed = DataFrame(OrderedDict([self.cols[(i % len(self.cols))](i) for i in range(self.C)]), index=self.index)
self.cols = [(lambda i: ('{0}_float'.format(i), randn(self.N))), (lambda i: ('{0}_int'.format(i), randint(100000000.0, size=self.N)))]
self.df_mixed2 = DataFrame(OrderedDict([self.cols[(i % len(self.cols))](i) for i in range(self.C)]), index=self.index)
self.cols = [(lambda i: ('{0}_float'.format(i), randn(self.N))), (lambda i: ('{0}_int'.format(i), randint(100000000.0, size=self.N))), (lambda i: ('{0}_str'.format(i), [('%08x' % randrange((16 ** 8))) for _ in range(self.N)]))]
self.df_mixed3 = DataFrame(OrderedDict([self.cols[(i % len(self.cols))](i) for i in range(self.C)]), index=self.index)
def time_write_json(self):
self.df.to_json(self.f, orient='split')
def time_write_json_T(self):
self.df.to_json(self.f, orient='columns')
def time_write_json_date_index(self):
self.df_date.to_json(self.f, orient='split')
def time_write_json_mixed_delta_int_tstamp(self):
self.df_mixed.to_json(self.f, orient='split')
def time_write_json_mixed_float_int(self):
self.df_mixed2.to_json(self.f, orient='index')
def time_write_json_mixed_float_int_T(self):
self.df_mixed2.to_json(self.f, orient='columns')
def time_write_json_mixed_float_int_str(self):
self.df_mixed3.to_json(self.f, orient='split')
def time_write_json_lines(self):
self.df.to_json(self.f, orient="records", lines=True)
def teardown(self):
self.remove(self.f)
class MsgPack(_Packers):
def setup(self):
self._setup()
def time_write_msgpack(self):
self.df2.to_msgpack(self.f)
def teardown(self):
self.remove(self.f)
class Pickle(_Packers):
def setup(self):
self._setup()
def time_write_pickle(self):
self.df2.to_pickle(self.f)
def teardown(self):
self.remove(self.f)
class SQL(_Packers):
def setup(self):
self._setup()
self.engine = create_engine('sqlite:///:memory:')
def time_write_sql(self):
self.df2.to_sql('table', self.engine, if_exists='replace')
class STATA(_Packers):
def setup(self):
self._setup()
self.df3=self.df.copy()
self.df3['int8_'] = [randint(np.iinfo(np.int8).min, (np.iinfo(np.int8).max - 27)) for _ in range(self.N)]
self.df3['int16_'] = [randint(np.iinfo(np.int16).min, (np.iinfo(np.int16).max - 27)) for _ in range(self.N)]
self.df3['int32_'] = [randint(np.iinfo(np.int32).min, (np.iinfo(np.int32).max - 27)) for _ in range(self.N)]
self.df3['float32_'] = np.array(randn(self.N), dtype=np.float32)
def time_write_stata(self):
self.df.to_stata(self.f, {'index': 'tc', })
def time_write_stata_with_validation(self):
self.df3.to_stata(self.f, {'index': 'tc', })
def teardown(self):
self.remove(self.f)