forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_hist_method.py
801 lines (675 loc) · 29 KB
/
test_hist_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
""" Test cases for .hist method """
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
Series,
to_datetime,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
TestPlotBase,
_check_plot_works,
)
@pytest.fixture
def ts():
return tm.makeTimeSeries(name="ts")
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def test_hist_legacy(self, ts):
_check_plot_works(ts.hist)
_check_plot_works(ts.hist, grid=False)
_check_plot_works(ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(ts.hist, by=ts.index.month)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(ts.hist, by=ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(ts.hist, ax=ax, default_axes=True)
_check_plot_works(ts.hist, ax=ax, figure=fig, default_axes=True)
_check_plot_works(ts.hist, figure=fig, default_axes=True)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(ts.hist, figure=fig, ax=ax1, default_axes=True)
_check_plot_works(ts.hist, figure=fig, ax=ax2, default_axes=True)
msg = (
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
"instance will be created"
)
with pytest.raises(ValueError, match=msg):
ts.hist(by=ts.index, figure=fig)
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
def test_hist_layout(self, hist_df):
df = hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
def test_hist_layout_with_by(self, hist_df):
df = hist_df
# _check_plot_works adds an `ax` kwarg to the method call
# so we get a warning about an axis being cleared, even
# though we don't explicing pass one, see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
def test_hist_no_overlap(self):
from matplotlib.pyplot import (
gcf,
subplot,
)
x = Series(np.random.randn(2))
y = Series(np.random.randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
def test_hist_by_no_extra_plots(self, hist_df):
df = hist_df
axes = df.height.hist(by=df.gender) # noqa
assert len(self.plt.get_fignums()) == 1
def test_plot_fails_when_ax_differs_from_figure(self, ts):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
msg = "passed axis not bound to passed figure"
with pytest.raises(AssertionError, match=msg):
ts.hist(ax=ax1, figure=fig2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
ser = Series(np.random.randint(1, 10))
ax = ser.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize(
"by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))]
)
def test_hist_with_legend(self, by, expected_axes_num, expected_layout):
# GH 6279 - Series histogram can have a legend
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
self._check_legend_labels(axes, "a")
@pytest.mark.parametrize("by", [None, "b"])
def test_hist_with_legend_raises(self, by):
# GH 6279 - Series histogram with legend and label raises
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.randn(30), index=index, name="a")
s.index.name = "b"
with pytest.raises(ValueError, match="Cannot use both legend and label"):
s.hist(legend=True, by=by, label="c")
def test_hist_kwargs(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = ts.plot.hist(orientation="horizontal", ax=ax)
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = ts.plot.hist(align="left", stacked=True, ax=ax)
tm.close()
@pytest.mark.xfail(reason="Api changed in 3.6.0")
@td.skip_if_no_scipy
def test_hist_kde(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
_check_plot_works(ts.plot.kde)
_check_plot_works(ts.plot.density)
_, ax = self.plt.subplots()
ax = ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
@td.skip_if_no_scipy
def test_hist_kde_color(self, ts):
_, ax = self.plt.subplots()
ax = ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
self._check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=["b"] * 10)
_, ax = self.plt.subplots()
ax = ts.plot.kde(logy=True, color="r", ax=ax)
self._check_ax_scales(ax, yaxis="log")
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ["r"])
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@pytest.mark.slow
def test_hist_df_legacy(self, hist_df):
from matplotlib.patches import Rectangle
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(hist_df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, grid=False)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
assert not axes[1, 1].get_visible()
_check_plot_works(df[[2]].hist)
df = DataFrame(np.random.randn(100, 1))
_check_plot_works(df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 5))
df[5] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, layout=(4, 2))
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
# make sure sharex, sharey is handled
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, sharex=True, sharey=True)
# handle figsize arg
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, figsize=(8, 10))
# check bins argument
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, bins=5)
# make sure xlabelsize and xrot are handled
ser = df[0]
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
ax = ser.hist(cumulative=True, bins=4, density=True)
# height of last bin (index 5) must be 1.0
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
tm.close()
ax = ser.hist(log=True)
# scale of y must be 'log'
self._check_ax_scales(ax, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
ser.hist(foo="bar")
def test_hist_non_numerical_or_datetime_raises(self):
# gh-10444, GH32590
df = DataFrame(
{
"a": np.random.rand(10),
"b": np.random.randint(0, 10, 10),
"c": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
)
),
"d": to_datetime(
np.random.randint(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
),
utc=True,
),
}
)
df_o = df.astype(object)
msg = "hist method requires numerical or datetime columns, nothing to plot."
with pytest.raises(ValueError, match=msg):
df_o.hist()
def test_hist_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
layout_to_expected_size = (
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
{"layout": (2, 2), "expected_size": (2, 2)},
{"layout": (4, 1), "expected_size": (4, 1)},
{"layout": (1, 4), "expected_size": (1, 4)},
{"layout": (3, 3), "expected_size": (3, 3)},
{"layout": (-1, 4), "expected_size": (1, 4)},
{"layout": (4, -1), "expected_size": (4, 1)},
{"layout": (-1, 2), "expected_size": (2, 2)},
{"layout": (2, -1), "expected_size": (2, 2)},
)
for layout_test in layout_to_expected_size:
axes = df.hist(layout=layout_test["layout"])
expected = layout_test["expected_size"]
self._check_axes_shape(axes, axes_num=3, layout=expected)
# layout too small for all 4 plots
msg = "Layout of 1x1 must be larger than required size 3"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1, 1))
# invalid format for layout
msg = re.escape("Layout must be a tuple of (rows, columns)")
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1,))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(-1, -1))
# GH 9351
def test_tight_layout(self):
df = DataFrame(np.random.randn(100, 2))
df[2] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
# Use default_axes=True when plotting method generate subplots itself
_check_plot_works(df.hist, default_axes=True)
self.plt.tight_layout()
tm.close()
def test_hist_subplot_xrot(self):
# GH 30288
df = DataFrame(
{
"length": [1.5, 0.5, 1.2, 0.9, 3],
"animal": ["pig", "rabbit", "pig", "pig", "rabbit"],
}
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column="length",
by="animal",
bins=5,
xrot=0,
)
self._check_ticks_props(axes, xrot=0)
@pytest.mark.parametrize(
"column, expected",
[
(None, ["width", "length", "height"]),
(["length", "width", "height"], ["length", "width", "height"]),
],
)
def test_hist_column_order_unchanged(self, column, expected):
# GH29235
df = DataFrame(
{
"width": [0.7, 0.2, 0.15, 0.2, 1.1],
"length": [1.5, 0.5, 1.2, 0.9, 3],
"height": [3, 0.5, 3.4, 2, 1],
},
index=["pig", "rabbit", "duck", "chicken", "horse"],
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column=column,
layout=(1, 3),
)
result = [axes[0, i].get_title() for i in range(3)]
assert result == expected
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend(self, by, column):
# GH 6279 - DataFrame histogram can have a legend
expected_axes_num = 1 if by is None and column is not None else 2
expected_layout = (1, expected_axes_num)
expected_labels = column or ["a", "b"]
if by is not None:
expected_labels = [expected_labels] * 2
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
legend=True,
by=by,
column=column,
)
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
if by is None and column is None:
axes = axes[0]
for expected_label, ax in zip(expected_labels, axes):
self._check_legend_labels(ax, expected_label)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend_raises(self, by, column):
# GH 6279 - DataFrame histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
with pytest.raises(ValueError, match="Cannot use both legend and label"):
df.hist(legend=True, by=by, column=column, label="d")
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
def test_hist_df_with_nonnumerics(self):
# GH 9853
df = DataFrame(
np.random.RandomState(42).randn(10, 4), columns=["A", "B", "C", "D"]
)
df["E"] = ["x", "y"] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are drawn on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df["b"].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@td.skip_if_no_mpl
def test_hist_with_nans_and_weights(self):
# GH 48884
df = DataFrame(
[[np.nan, 0.2, 0.3], [0.4, np.nan, np.nan], [0.7, 0.8, 0.9]],
columns=list("abc"),
)
weights = np.array([0.25, 0.3, 0.45])
no_nan_df = DataFrame([[0.4, 0.2, 0.3], [0.7, 0.8, 0.9]], columns=list("abc"))
no_nan_weights = np.array([[0.3, 0.25, 0.25], [0.45, 0.45, 0.45]])
from matplotlib.patches import Rectangle
_, ax0 = self.plt.subplots()
df.plot.hist(ax=ax0, weights=weights)
rects = [x for x in ax0.get_children() if isinstance(x, Rectangle)]
heights = [rect.get_height() for rect in rects]
_, ax1 = self.plt.subplots()
no_nan_df.plot.hist(ax=ax1, weights=no_nan_weights)
no_nan_rects = [x for x in ax1.get_children() if isinstance(x, Rectangle)]
no_nan_heights = [rect.get_height() for rect in no_nan_rects]
assert all(h0 == h1 for h0, h1 in zip(heights, no_nan_heights))
idxerror_weights = np.array([[0.3, 0.25], [0.45, 0.45]])
msg = "weights must have the same shape as data, or be a single column"
with pytest.raises(ValueError, match=msg):
_, ax2 = self.plt.subplots()
no_nan_df.plot.hist(ax=ax2, weights=idxerror_weights)
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
def test_grouped_hist_legacy(self):
from matplotlib.patches import Rectangle
from pandas.plotting._matplotlib.hist import _grouped_hist
df = DataFrame(np.random.randn(500, 1), columns=["A"])
df["B"] = to_datetime(
np.random.randint(
812419200000000000,
819331200000000000,
size=500,
dtype=np.int64,
)
)
df["C"] = np.random.randint(0, 4, 500)
df["D"] = ["X"] * 500
axes = _grouped_hist(df.A, by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
axes = df.hist(by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
# group by a key with single value
axes = df.hist(by="D", rot=30)
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
self._check_ticks_props(axes, xrot=30)
tm.close()
# make sure kwargs to hist are handled
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = _grouped_hist(
df.A,
by=df.C,
cumulative=True,
bins=4,
xlabelsize=xf,
xrot=xrot,
ylabelsize=yf,
yrot=yrot,
density=True,
)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
height = rects[-1].get_height()
tm.assert_almost_equal(height, 1.0)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
axes = _grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
self._check_ax_scales(axes, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
_grouped_hist(df.A, by=df.C, foo="bar")
msg = "Specify figure size by tuple instead"
with pytest.raises(ValueError, match=msg):
df.hist(by="C", figsize="default")
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
gender_int = np.random.RandomState(42).choice([0, 1], size=n)
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
gb = df_int.groupby("gender")
axes = gb.hist()
assert len(axes) == 2
assert len(self.plt.get_fignums()) == 2
tm.close()
@pytest.mark.slow
def test_grouped_hist_layout(self, hist_df):
df = hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.hist(column="weight", by=df.gender, layout=(1, 1))
msg = "Layout of 1x3 must be larger than required size 4"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(1, 3))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(-1, -1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, 1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, -1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
tm.close()
# GH 6769
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by="classroom", layout=(2, 2)
)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
# without column
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, by="classroom")
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.hist(by="gender", layout=(3, 5))
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
axes = df.hist(column=["height", "weight", "category"])
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
def test_grouped_hist_multiple_axes(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = self.plt.subplots(2, 3)
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
returned = df.hist(by="classroom", ax=axes[1])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
msg = "The number of passed axes must be 1, the same as the output plot"
with pytest.raises(ValueError, match=msg):
axes = df.hist(column="height", ax=axes)
def test_axis_share_x(self, hist_df):
df = hist_df
# GH4089
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
# share x
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
# don't share y
assert not self.get_y_axis(ax1).joined(ax1, ax2)
assert not self.get_y_axis(ax2).joined(ax1, ax2)
def test_axis_share_y(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
# share y
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
# don't share x
assert not self.get_x_axis(ax1).joined(ax1, ax2)
assert not self.get_x_axis(ax2).joined(ax1, ax2)
def test_axis_share_xy(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
# share both x and y
assert self.get_x_axis(ax1).joined(ax1, ax2)
assert self.get_x_axis(ax2).joined(ax1, ax2)
assert self.get_y_axis(ax1).joined(ax1, ax2)
assert self.get_y_axis(ax2).joined(ax1, ax2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
ax = df.hist(by="a", histtype=histtype)
self._check_patches_all_filled(ax, filled=expected)