forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_other.py
529 lines (414 loc) · 18.5 KB
/
test_other.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# -*- coding: utf-8 -*-
"""
test all other .agg behavior
"""
from __future__ import print_function
from collections import OrderedDict
import datetime as dt
from functools import partial
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame, Index, MultiIndex, PeriodIndex, Series, date_range,
period_range)
from pandas.core.groupby.groupby import SpecificationError
import pandas.util.testing as tm
from pandas.io.formats.printing import pprint_thing
def test_agg_api():
# GH 6337
# http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error
# different api for agg when passed custom function with mixed frame
df = DataFrame({'data1': np.random.randn(5),
'data2': np.random.randn(5),
'key1': ['a', 'a', 'b', 'b', 'a'],
'key2': ['one', 'two', 'one', 'two', 'one']})
grouped = df.groupby('key1')
def peak_to_peak(arr):
return arr.max() - arr.min()
expected = grouped.agg([peak_to_peak])
expected.columns = ['data1', 'data2']
result = grouped.agg(peak_to_peak)
tm.assert_frame_equal(result, expected)
def test_agg_datetimes_mixed():
data = [[1, '2012-01-01', 1.0],
[2, '2012-01-02', 2.0],
[3, None, 3.0]]
df1 = DataFrame({'key': [x[0] for x in data],
'date': [x[1] for x in data],
'value': [x[2] for x in data]})
data = [[row[0],
(dt.datetime.strptime(row[1], '%Y-%m-%d').date()
if row[1] else None),
row[2]]
for row in data]
df2 = DataFrame({'key': [x[0] for x in data],
'date': [x[1] for x in data],
'value': [x[2] for x in data]})
df1['weights'] = df1['value'] / df1['value'].sum()
gb1 = df1.groupby('date').aggregate(np.sum)
df2['weights'] = df1['value'] / df1['value'].sum()
gb2 = df2.groupby('date').aggregate(np.sum)
assert (len(gb1) == len(gb2))
def test_agg_period_index():
prng = period_range('2012-1-1', freq='M', periods=3)
df = DataFrame(np.random.randn(3, 2), index=prng)
rs = df.groupby(level=0).sum()
assert isinstance(rs.index, PeriodIndex)
# GH 3579
index = period_range(start='1999-01', periods=5, freq='M')
s1 = Series(np.random.rand(len(index)), index=index)
s2 = Series(np.random.rand(len(index)), index=index)
series = [('s1', s1), ('s2', s2)]
df = DataFrame.from_dict(OrderedDict(series))
grouped = df.groupby(df.index.month)
list(grouped)
def test_agg_dict_parameter_cast_result_dtypes():
# GH 12821
df = DataFrame({'class': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'],
'time': date_range('1/1/2011', periods=8, freq='H')})
df.loc[[0, 1, 2, 5], 'time'] = None
# test for `first` function
exp = df.loc[[0, 3, 4, 6]].set_index('class')
grouped = df.groupby('class')
tm.assert_frame_equal(grouped.first(), exp)
tm.assert_frame_equal(grouped.agg('first'), exp)
tm.assert_frame_equal(grouped.agg({'time': 'first'}), exp)
tm.assert_series_equal(grouped.time.first(), exp['time'])
tm.assert_series_equal(grouped.time.agg('first'), exp['time'])
# test for `last` function
exp = df.loc[[0, 3, 4, 7]].set_index('class')
grouped = df.groupby('class')
tm.assert_frame_equal(grouped.last(), exp)
tm.assert_frame_equal(grouped.agg('last'), exp)
tm.assert_frame_equal(grouped.agg({'time': 'last'}), exp)
tm.assert_series_equal(grouped.time.last(), exp['time'])
tm.assert_series_equal(grouped.time.agg('last'), exp['time'])
# count
exp = pd.Series([2, 2, 2, 2],
index=Index(list('ABCD'), name='class'),
name='time')
tm.assert_series_equal(grouped.time.agg(len), exp)
tm.assert_series_equal(grouped.time.size(), exp)
exp = pd.Series([0, 1, 1, 2],
index=Index(list('ABCD'), name='class'),
name='time')
tm.assert_series_equal(grouped.time.count(), exp)
def test_agg_cast_results_dtypes():
# similar to GH12821
# xref #11444
u = [dt.datetime(2015, x + 1, 1) for x in range(12)]
v = list('aaabbbbbbccd')
df = pd.DataFrame({'X': v, 'Y': u})
result = df.groupby('X')['Y'].agg(len)
expected = df.groupby('X')['Y'].count()
tm.assert_series_equal(result, expected)
def test_aggregate_float64_no_int64():
# see gh-11199
df = DataFrame({"a": [1, 2, 3, 4, 5],
"b": [1, 2, 2, 4, 5],
"c": [1, 2, 3, 4, 5]})
expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5])
expected.index.name = "b"
result = df.groupby("b")[["a"]].mean()
tm.assert_frame_equal(result, expected)
expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]},
index=[1, 2, 4, 5])
expected.index.name = "b"
result = df.groupby("b")[["a", "c"]].mean()
tm.assert_frame_equal(result, expected)
def test_aggregate_api_consistency():
# GH 9052
# make sure that the aggregates via dict
# are consistent
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
grouped = df.groupby(['A', 'B'])
c_mean = grouped['C'].mean()
c_sum = grouped['C'].sum()
d_mean = grouped['D'].mean()
d_sum = grouped['D'].sum()
result = grouped['D'].agg(['sum', 'mean'])
expected = pd.concat([d_sum, d_mean], axis=1)
expected.columns = ['sum', 'mean']
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg([np.sum, np.mean])
expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1)
expected.columns = MultiIndex.from_product([['C', 'D'],
['sum', 'mean']])
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped[['D', 'C']].agg([np.sum, np.mean])
expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1)
expected.columns = MultiIndex.from_product([['D', 'C'],
['sum', 'mean']])
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg({'C': 'mean', 'D': 'sum'})
expected = pd.concat([d_sum, c_mean], axis=1)
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg({'C': ['mean', 'sum'],
'D': ['mean', 'sum']})
expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1)
expected.columns = MultiIndex.from_product([['C', 'D'],
['mean', 'sum']])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped[['D', 'C']].agg({'r': np.sum,
'r2': np.mean})
expected = pd.concat([d_sum, c_sum, d_mean, c_mean], axis=1)
expected.columns = MultiIndex.from_product([['r', 'r2'],
['D', 'C']])
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_dict_renaming_deprecation():
# 15931
df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
'B': range(5),
'C': range(5)})
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False) as w:
df.groupby('A').agg({'B': {'foo': ['sum', 'max']},
'C': {'bar': ['count', 'min']}})
assert "using a dict with renaming" in str(w[0].message)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
df.groupby('A')[['B', 'C']].agg({'ma': 'max'})
with tm.assert_produces_warning(FutureWarning) as w:
df.groupby('A').B.agg({'foo': 'count'})
assert "using a dict on a Series for aggregation" in str(w[0].message)
def test_agg_compat():
# GH 12334
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
g = df.groupby(['A', 'B'])
expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1)
expected.columns = MultiIndex.from_tuples([('C', 'sum'),
('C', 'std')])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'C': ['sum', 'std']})
tm.assert_frame_equal(result, expected, check_like=True)
expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1)
expected.columns = ['C', 'D']
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'C': 'sum', 'D': 'std'})
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_nested_dicts():
# API change for disallowing these types of nested dicts
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
g = df.groupby(['A', 'B'])
msg = r'cannot perform renaming for r[1-2] with a nested dictionary'
with pytest.raises(SpecificationError, match=msg):
g.aggregate({'r1': {'C': ['mean', 'sum']},
'r2': {'D': ['mean', 'sum']}})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g.agg({'C': {'ra': ['mean', 'std']},
'D': {'rb': ['mean', 'std']}})
expected = pd.concat([g['C'].mean(), g['C'].std(),
g['D'].mean(), g['D'].std()],
axis=1)
expected.columns = pd.MultiIndex.from_tuples(
[('ra', 'mean'), ('ra', 'std'),
('rb', 'mean'), ('rb', 'std')])
tm.assert_frame_equal(result, expected, check_like=True)
# same name as the original column
# GH9052
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = g['D'].agg({'result1': np.sum, 'result2': np.mean})
expected = expected.rename(columns={'result1': 'D'})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'D': np.sum, 'result2': np.mean})
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_item_by_item_raise_typeerror():
df = DataFrame(np.random.randint(10, size=(20, 10)))
def raiseException(df):
pprint_thing('----------------------------------------')
pprint_thing(df.to_string())
raise TypeError('test')
with pytest.raises(TypeError, match='test'):
df.groupby(0).agg(raiseException)
def test_series_agg_multikey():
ts = tm.makeTimeSeries()
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.agg(np.sum)
expected = grouped.sum()
tm.assert_series_equal(result, expected)
def test_series_agg_multi_pure_python():
data = DataFrame(
{'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny',
'dull', 'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
def bad(x):
assert (len(x.values.base) > 0)
return 'foo'
result = data.groupby(['A', 'B']).agg(bad)
expected = data.groupby(['A', 'B']).agg(lambda x: 'foo')
tm.assert_frame_equal(result, expected)
def test_agg_consistency():
# agg with ([]) and () not consistent
# GH 6715
def P1(a):
try:
return np.percentile(a.dropna(), q=1)
except Exception:
return np.nan
df = DataFrame({'col1': [1, 2, 3, 4],
'col2': [10, 25, 26, 31],
'date': [dt.date(2013, 2, 10), dt.date(2013, 2, 10),
dt.date(2013, 2, 11), dt.date(2013, 2, 11)]})
g = df.groupby('date')
expected = g.agg([P1])
expected.columns = expected.columns.levels[0]
result = g.agg(P1)
tm.assert_frame_equal(result, expected)
def test_agg_callables():
# GH 7929
df = DataFrame({'foo': [1, 2], 'bar': [3, 4]}).astype(np.int64)
class fn_class(object):
def __call__(self, x):
return sum(x)
equiv_callables = [sum,
np.sum,
lambda x: sum(x),
lambda x: x.sum(),
partial(sum),
fn_class(), ]
expected = df.groupby("foo").agg(sum)
for ecall in equiv_callables:
result = df.groupby('foo').agg(ecall)
tm.assert_frame_equal(result, expected)
def test_agg_over_numpy_arrays():
# GH 3788
df = pd.DataFrame([[1, np.array([10, 20, 30])],
[1, np.array([40, 50, 60])],
[2, np.array([20, 30, 40])]],
columns=['category', 'arraydata'])
result = df.groupby('category').agg(sum)
expected_data = [[np.array([50, 70, 90])], [np.array([20, 30, 40])]]
expected_index = pd.Index([1, 2], name='category')
expected_column = ['arraydata']
expected = pd.DataFrame(expected_data,
index=expected_index,
columns=expected_column)
tm.assert_frame_equal(result, expected)
def test_agg_timezone_round_trip():
# GH 15426
ts = pd.Timestamp("2016-01-01 12:00:00", tz='US/Pacific')
df = pd.DataFrame({'a': 1,
'b': [ts + dt.timedelta(minutes=nn)
for nn in range(10)]})
result1 = df.groupby('a')['b'].agg(np.min).iloc[0]
result2 = df.groupby('a')['b'].agg(lambda x: np.min(x)).iloc[0]
result3 = df.groupby('a')['b'].min().iloc[0]
assert result1 == ts
assert result2 == ts
assert result3 == ts
dates = [pd.Timestamp("2016-01-0%d 12:00:00" % i, tz='US/Pacific')
for i in range(1, 5)]
df = pd.DataFrame({'A': ['a', 'b'] * 2, 'B': dates})
grouped = df.groupby('A')
ts = df['B'].iloc[0]
assert ts == grouped.nth(0)['B'].iloc[0]
assert ts == grouped.head(1)['B'].iloc[0]
assert ts == grouped.first()['B'].iloc[0]
assert ts == grouped.apply(lambda x: x.iloc[0])[0]
ts = df['B'].iloc[2]
assert ts == grouped.last()['B'].iloc[0]
assert ts == grouped.apply(lambda x: x.iloc[-1])[0]
def test_sum_uint64_overflow():
# see gh-14758
# Convert to uint64 and don't overflow
df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], dtype=object)
df = df + 9223372036854775807
index = pd.Index([9223372036854775808,
9223372036854775810,
9223372036854775812],
dtype=np.uint64)
expected = pd.DataFrame({1: [9223372036854775809,
9223372036854775811,
9223372036854775813]},
index=index)
expected.index.name = 0
result = df.groupby(0).sum()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("structure, expected", [
(tuple, pd.DataFrame({'C': {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})),
(list, pd.DataFrame({'C': {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})),
(lambda x: tuple(x), pd.DataFrame({'C': {(1, 1): (1, 1, 1),
(3, 4): (3, 4, 4)}})),
(lambda x: list(x), pd.DataFrame({'C': {(1, 1): [1, 1, 1],
(3, 4): [3, 4, 4]}}))
])
def test_agg_structs_dataframe(structure, expected):
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4],
'C': [1, 1, 1, 3, 4, 4]})
result = df.groupby(['A', 'B']).aggregate(structure)
expected.index.names = ['A', 'B']
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("structure, expected", [
(tuple, pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name='C')),
(list, pd.Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name='C')),
(lambda x: tuple(x), pd.Series([(1, 1, 1), (3, 4, 4)],
index=[1, 3], name='C')),
(lambda x: list(x), pd.Series([[1, 1, 1], [3, 4, 4]],
index=[1, 3], name='C'))
])
def test_agg_structs_series(structure, expected):
# Issue #18079
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4],
'C': [1, 1, 1, 3, 4, 4]})
result = df.groupby('A')['C'].aggregate(structure)
expected.index.name = 'A'
tm.assert_series_equal(result, expected)
def test_agg_category_nansum(observed):
categories = ['a', 'b', 'c']
df = pd.DataFrame({"A": pd.Categorical(['a', 'a', 'b'],
categories=categories),
'B': [1, 2, 3]})
result = df.groupby("A", observed=observed).B.agg(np.nansum)
expected = pd.Series([3, 3, 0],
index=pd.CategoricalIndex(['a', 'b', 'c'],
categories=categories,
name='A'),
name='B')
if observed:
expected = expected[expected != 0]
tm.assert_series_equal(result, expected)
def test_agg_list_like_func():
# GH 18473
df = pd.DataFrame({'A': [str(x) for x in range(3)],
'B': [str(x) for x in range(3)]})
grouped = df.groupby('A', as_index=False, sort=False)
result = grouped.agg({'B': lambda x: list(x)})
expected = pd.DataFrame({'A': [str(x) for x in range(3)],
'B': [[str(x)] for x in range(3)]})
tm.assert_frame_equal(result, expected)
def test_agg_lambda_with_timezone():
# GH 23683
df = pd.DataFrame({
'tag': [1, 1],
'date': [
pd.Timestamp('2018-01-01', tz='UTC'),
pd.Timestamp('2018-01-02', tz='UTC')]
})
result = df.groupby('tag').agg({'date': lambda e: e.head(1)})
expected = pd.DataFrame([pd.Timestamp('2018-01-01', tz='UTC')],
index=pd.Index([1], name='tag'),
columns=['date'])
tm.assert_frame_equal(result, expected)