forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_transpose.py
197 lines (169 loc) · 6.29 KB
/
test_transpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
IntervalIndex,
Series,
Timestamp,
bdate_range,
date_range,
timedelta_range,
)
import pandas._testing as tm
class TestTranspose:
def test_transpose_td64_intervals(self):
# GH#44917
tdi = timedelta_range("0 Days", "3 Days")
ii = IntervalIndex.from_breaks(tdi)
ii = ii.insert(-1, np.nan)
df = DataFrame(ii)
result = df.T
result.columns = Index(list(range(len(ii))))
expected = DataFrame({i: ii[i : i + 1] for i in range(len(ii))})
tm.assert_frame_equal(result, expected)
def test_transpose_empty_preserves_datetimeindex(self):
# GH#41382
dti = DatetimeIndex([], dtype="M8[ns]")
df = DataFrame(index=dti)
expected = DatetimeIndex([], dtype="datetime64[ns]", freq=None)
result1 = df.T.sum().index
result2 = df.sum(axis=1).index
tm.assert_index_equal(result1, expected)
tm.assert_index_equal(result2, expected)
def test_transpose_tzaware_1col_single_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df = DataFrame(dti)
assert (df.dtypes == dti.dtype).all()
res = df.T
assert (res.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_single_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
df3 = DataFrame({"A": dti, "B": dti})
assert (df3.dtypes == dti.dtype).all()
res3 = df3.T
assert (res3.dtypes == dti.dtype).all()
def test_transpose_tzaware_2col_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
df4 = DataFrame({"A": dti, "B": dti2})
assert (df4.dtypes == [dti.dtype, dti2.dtype]).all()
assert (df4.T.dtypes == object).all()
tm.assert_frame_equal(df4.T.T, df4.astype(object))
@pytest.mark.parametrize("tz", [None, "America/New_York"])
def test_transpose_preserves_dtindex_equality_with_dst(self, tz):
# GH#19970
idx = date_range("20161101", "20161130", freq="4h", tz=tz)
df = DataFrame({"a": range(len(idx)), "b": range(len(idx))}, index=idx)
result = df.T == df.T
expected = DataFrame(True, index=list("ab"), columns=idx)
tm.assert_frame_equal(result, expected)
def test_transpose_object_to_tzaware_mixed_tz(self):
# GH#26825
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
dti2 = dti.tz_convert("US/Pacific")
# mixed all-tzaware dtypes
df2 = DataFrame([dti, dti2])
assert (df2.dtypes == object).all()
res2 = df2.T
assert (res2.dtypes == object).all()
def test_transpose_uint64(self):
df = DataFrame(
{"A": np.arange(3), "B": [2**63, 2**63 + 5, 2**63 + 10]},
dtype=np.uint64,
)
result = df.T
expected = DataFrame(df.values.T)
expected.index = ["A", "B"]
tm.assert_frame_equal(result, expected)
def test_transpose_float(self, float_frame):
frame = float_frame
dft = frame.T
for idx, series in dft.items():
for col, value in series.items():
if np.isnan(value):
assert np.isnan(frame[col][idx])
else:
assert value == frame[col][idx]
def test_transpose_mixed(self):
# mixed type
mixed = DataFrame(
{
"A": [0.0, 1.0, 2.0, 3.0, 4.0],
"B": [0.0, 1.0, 0.0, 1.0, 0.0],
"C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
"D": bdate_range("1/1/2009", periods=5),
},
index=Index(["a", "b", "c", "d", "e"], dtype=object),
)
mixed_T = mixed.T
for col, s in mixed_T.items():
assert s.dtype == np.object_
def test_transpose_get_view(self, float_frame):
dft = float_frame.T
dft.iloc[:, 5:10] = 5
assert (float_frame.values[5:10] != 5).all()
def test_transpose_get_view_dt64tzget_view(self):
dti = date_range("2016-01-01", periods=6, tz="US/Pacific")
arr = dti._data.reshape(3, 2)
df = DataFrame(arr)
assert df._mgr.nblocks == 1
result = df.T
assert result._mgr.nblocks == 1
rtrip = result._mgr.blocks[0].values
assert np.shares_memory(df._mgr.blocks[0].values._ndarray, rtrip._ndarray)
def test_transpose_not_inferring_dt(self):
# GH#51546
df = DataFrame(
{
"a": [Timestamp("2019-12-31"), Timestamp("2019-12-31")],
},
dtype=object,
)
result = df.T
expected = DataFrame(
[[Timestamp("2019-12-31"), Timestamp("2019-12-31")]],
index=["a"],
dtype=object,
)
tm.assert_frame_equal(result, expected)
def test_transpose_not_inferring_dt_mixed_blocks(self):
# GH#51546
df = DataFrame(
{
"a": Series(
[Timestamp("2019-12-31"), Timestamp("2019-12-31")], dtype=object
),
"b": [Timestamp("2019-12-31"), Timestamp("2019-12-31")],
}
)
result = df.T
expected = DataFrame(
[
[Timestamp("2019-12-31"), Timestamp("2019-12-31")],
[Timestamp("2019-12-31"), Timestamp("2019-12-31")],
],
index=["a", "b"],
dtype=object,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype1", ["Int64", "Float64"])
@pytest.mark.parametrize("dtype2", ["Int64", "Float64"])
def test_transpose(self, dtype1, dtype2):
# GH#57315 - transpose should have F contiguous blocks
df = DataFrame(
{
"a": pd.array([1, 1, 2], dtype=dtype1),
"b": pd.array([3, 4, 5], dtype=dtype2),
}
)
result = df.T
for blk in result._mgr.blocks:
# When dtypes are unequal, we get NumPy object array
data = blk.values._data if dtype1 == dtype2 else blk.values
assert data.flags["F_CONTIGUOUS"]