@@ -139,22 +139,22 @@ def scatter_matrix(
139
139
140
140
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
141
141
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
142
- array([[<AxesSubplot:xlabel='A', ylabel='A'>,
143
- <AxesSubplot:xlabel='B', ylabel='A'>,
144
- <AxesSubplot:xlabel='C', ylabel='A'>,
145
- <AxesSubplot:xlabel='D', ylabel='A'>],
146
- [<AxesSubplot:xlabel='A', ylabel='B'>,
147
- <AxesSubplot:xlabel='B', ylabel='B'>,
148
- <AxesSubplot:xlabel='C', ylabel='B'>,
149
- <AxesSubplot:xlabel='D', ylabel='B'>],
150
- [<AxesSubplot:xlabel='A', ylabel='C'>,
151
- <AxesSubplot:xlabel='B', ylabel='C'>,
152
- <AxesSubplot:xlabel='C', ylabel='C'>,
153
- <AxesSubplot:xlabel='D', ylabel='C'>],
154
- [<AxesSubplot:xlabel='A', ylabel='D'>,
155
- <AxesSubplot:xlabel='B', ylabel='D'>,
156
- <AxesSubplot:xlabel='C', ylabel='D'>,
157
- <AxesSubplot:xlabel='D', ylabel='D'>]], dtype=object)
142
+ array([[<AxesSubplot: xlabel='A', ylabel='A'>,
143
+ <AxesSubplot: xlabel='B', ylabel='A'>,
144
+ <AxesSubplot: xlabel='C', ylabel='A'>,
145
+ <AxesSubplot: xlabel='D', ylabel='A'>],
146
+ [<AxesSubplot: xlabel='A', ylabel='B'>,
147
+ <AxesSubplot: xlabel='B', ylabel='B'>,
148
+ <AxesSubplot: xlabel='C', ylabel='B'>,
149
+ <AxesSubplot: xlabel='D', ylabel='B'>],
150
+ [<AxesSubplot: xlabel='A', ylabel='C'>,
151
+ <AxesSubplot: xlabel='B', ylabel='C'>,
152
+ <AxesSubplot: xlabel='C', ylabel='C'>,
153
+ <AxesSubplot: xlabel='D', ylabel='C'>],
154
+ [<AxesSubplot: xlabel='A', ylabel='D'>,
155
+ <AxesSubplot: xlabel='B', ylabel='D'>,
156
+ <AxesSubplot: xlabel='C', ylabel='D'>,
157
+ <AxesSubplot: xlabel='D', ylabel='D'>]], dtype=object)
158
158
"""
159
159
plot_backend = _get_plot_backend ("matplotlib" )
160
160
return plot_backend .scatter_matrix (
@@ -247,7 +247,7 @@ def radviz(
247
247
... }
248
248
... )
249
249
>>> pd.plotting.radviz(df, 'Category')
250
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
250
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
251
251
"""
252
252
plot_backend = _get_plot_backend ("matplotlib" )
253
253
return plot_backend .radviz (
@@ -311,7 +311,7 @@ def andrews_curves(
311
311
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
312
312
... )
313
313
>>> pd.plotting.andrews_curves(df, 'Name')
314
- <AxesSubplot:title={'center':'width'}>
314
+ <AxesSubplot: title={'center': 'width'}>
315
315
"""
316
316
plot_backend = _get_plot_backend ("matplotlib" )
317
317
return plot_backend .andrews_curves (
@@ -445,7 +445,7 @@ def parallel_coordinates(
445
445
>>> pd.plotting.parallel_coordinates(
446
446
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
447
447
... )
448
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
448
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
449
449
"""
450
450
plot_backend = _get_plot_backend ("matplotlib" )
451
451
return plot_backend .parallel_coordinates (
@@ -494,15 +494,15 @@ def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Ax
494
494
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
495
495
>>> s = pd.Series(x)
496
496
>>> s.plot()
497
- <AxesSubplot:xlabel='Midrange'>
497
+ <AxesSubplot: xlabel='Midrange'>
498
498
499
499
A lag plot with ``lag=1`` returns
500
500
501
501
.. plot::
502
502
:context: close-figs
503
503
504
504
>>> pd.plotting.lag_plot(s, lag=1)
505
- <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
505
+ <AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
506
506
"""
507
507
plot_backend = _get_plot_backend ("matplotlib" )
508
508
return plot_backend .lag_plot (series = series , lag = lag , ax = ax , ** kwds )
@@ -536,7 +536,7 @@ def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Ax
536
536
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
537
537
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
538
538
>>> pd.plotting.autocorrelation_plot(s)
539
- <AxesSubplot:title={'center':'width'}, xlabel='Lag', ylabel='Autocorrelation'>
539
+ <AxesSubplot: title={'center': 'width'}, xlabel='Lag', ylabel='Autocorrelation'>
540
540
"""
541
541
plot_backend = _get_plot_backend ("matplotlib" )
542
542
return plot_backend .autocorrelation_plot (series = series , ax = ax , ** kwargs )
0 commit comments