forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_getitem.py
721 lines (557 loc) · 22.8 KB
/
test_getitem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
"""
Series.__getitem__ test classes are organized by the type of key passed.
"""
from datetime import (
date,
datetime,
time,
)
import numpy as np
import pytest
from pandas._libs.tslibs import (
conversion,
timezones,
)
from pandas.core.dtypes.common import is_scalar
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
Series,
Timestamp,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
from pandas.tseries.offsets import BDay
class TestSeriesGetitemScalars:
def test_getitem_object_index_float_string(self):
# GH#17286
ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0]))
assert ser["a"] == 1
assert ser[1.0] == 1
def test_getitem_float_keys_tuple_values(self):
# see GH#13509
# unique Index
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo")
result = ser[0.0]
assert result == (1, 1)
# non-unique Index
expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo")
ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo")
result = ser[0.0]
tm.assert_series_equal(result, expected)
def test_getitem_unrecognized_scalar(self):
# GH#32684 a scalar key that is not recognized by lib.is_scalar
# a series that might be produced via `frame.dtypes`
ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")])
key = ser.index[1]
result = ser[key]
assert result == 2
def test_getitem_negative_out_of_bounds(self):
ser = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10))
msg = "index -11 is out of bounds for axis 0 with size 10"
with pytest.raises(IndexError, match=msg):
ser[-11]
def test_getitem_out_of_bounds_indexerror(self, datetime_series):
# don't segfault, GH#495
msg = r"index \d+ is out of bounds for axis 0 with size \d+"
with pytest.raises(IndexError, match=msg):
datetime_series[len(datetime_series)]
def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self):
# GH#917
# With a RangeIndex, an int key gives a KeyError
ser = Series([], dtype=object)
with pytest.raises(KeyError, match="-1"):
ser[-1]
def test_getitem_keyerror_with_int64index(self):
ser = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2])
with pytest.raises(KeyError, match=r"^5$"):
ser[5]
with pytest.raises(KeyError, match=r"^'c'$"):
ser["c"]
# not monotonic
ser = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1])
with pytest.raises(KeyError, match=r"^5$"):
ser[5]
with pytest.raises(KeyError, match=r"^'c'$"):
ser["c"]
def test_getitem_int64(self, datetime_series):
idx = np.int64(5)
assert datetime_series[idx] == datetime_series[5]
def test_getitem_full_range(self):
# github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7
ser = Series(range(5), index=list(range(5)))
result = ser[list(range(5))]
tm.assert_series_equal(result, ser)
# ------------------------------------------------------------------
# Series with DatetimeIndex
@pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"])
def test_getitem_pydatetime_tz(self, tzstr):
tz = timezones.maybe_get_tz(tzstr)
index = date_range(
start="2012-12-24 16:00", end="2012-12-24 18:00", freq="H", tz=tzstr
)
ts = Series(index=index, data=index.hour)
time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
dt = datetime(2012, 12, 24, 17, 0)
time_datetime = conversion.localize_pydatetime(dt, tz)
assert ts[time_pandas] == ts[time_datetime]
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_string_index_alias_tz_aware(self, tz):
rng = date_range("1/1/2000", periods=10, tz=tz)
ser = Series(np.random.randn(len(rng)), index=rng)
result = ser["1/3/2000"]
tm.assert_almost_equal(result, ser[2])
def test_getitem_time_object(self):
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Series with CategoricalIndex
def test_getitem_scalar_categorical_index(self):
cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
ser = Series([1, 2], index=cats)
expected = ser.iloc[0]
result = ser[cats[0]]
assert result == expected
def test_getitem_numeric_categorical_listlike_matches_scalar(self):
# GH#15470
ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0]))
# 0 is treated as a label
assert ser[0] == "c"
# the listlike analogue should also be treated as labels
res = ser[[0]]
expected = ser.iloc[-1:]
tm.assert_series_equal(res, expected)
res2 = ser[[0, 1, 2]]
tm.assert_series_equal(res2, ser.iloc[::-1])
def test_getitem_integer_categorical_not_positional(self):
# GH#14865
ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category"))
assert ser.get(3) == "c"
assert ser[3] == "c"
def test_getitem_str_with_timedeltaindex(self):
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
ser = Series(np.arange(len(rng)), index=rng)
key = "6 days, 23:11:12"
indexer = rng.get_loc(key)
assert indexer == 133
result = ser[key]
assert result == ser.iloc[133]
msg = r"^Timedelta\('50 days 00:00:00'\)$"
with pytest.raises(KeyError, match=msg):
rng.get_loc("50 days")
with pytest.raises(KeyError, match=msg):
ser["50 days"]
def test_getitem_bool_index_positional(self):
# GH#48653
ser = Series({True: 1, False: 0})
result = ser[0]
assert result == 1
class TestSeriesGetitemSlices:
def test_getitem_partial_str_slice_with_datetimeindex(self):
# GH#34860
arr = date_range("1/1/2008", "1/1/2009")
ser = arr.to_series()
result = ser["2008"]
rng = date_range(start="2008-01-01", end="2008-12-31")
expected = Series(rng, index=rng)
tm.assert_series_equal(result, expected)
def test_getitem_slice_strings_with_datetimeindex(self):
idx = DatetimeIndex(
["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]
)
ts = Series(np.random.randn(len(idx)), index=idx)
result = ts["1/2/2000":]
expected = ts[1:]
tm.assert_series_equal(result, expected)
result = ts["1/2/2000":"1/3/2000"]
expected = ts[1:4]
tm.assert_series_equal(result, expected)
def test_getitem_partial_str_slice_with_timedeltaindex(self):
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
ser = Series(np.arange(len(rng)), index=rng)
result = ser["5 day":"6 day"]
expected = ser.iloc[86:134]
tm.assert_series_equal(result, expected)
result = ser["5 day":]
expected = ser.iloc[86:]
tm.assert_series_equal(result, expected)
result = ser[:"6 day"]
expected = ser.iloc[:134]
tm.assert_series_equal(result, expected)
def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self):
# higher reso
rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
ser = Series(np.arange(len(rng)), index=rng)
result = ser["1 day 10:11:12":]
expected = ser.iloc[0:]
tm.assert_series_equal(result, expected)
result = ser["1 day 10:11:12.001":]
expected = ser.iloc[1000:]
tm.assert_series_equal(result, expected)
result = ser["1 days, 10:11:12.001001"]
assert result == ser.iloc[1001]
def test_getitem_slice_2d(self, datetime_series):
# GH#30588 multi-dimensional indexing deprecated
with tm.assert_produces_warning(
FutureWarning, match="Support for multi-dimensional indexing"
):
# GH#30867 Don't want to support this long-term, but
# for now ensure that the warning from Index
# doesn't comes through via Series.__getitem__.
result = datetime_series[:, np.newaxis]
expected = datetime_series.values[:, np.newaxis]
tm.assert_almost_equal(result, expected)
# FutureWarning from NumPy.
@pytest.mark.filterwarnings("ignore:Using a non-tuple:FutureWarning")
def test_getitem_median_slice_bug(self):
index = date_range("20090415", "20090519", freq="2B")
s = Series(np.random.randn(13), index=index)
indexer = [slice(6, 7, None)]
with tm.assert_produces_warning(FutureWarning):
# GH#31299
result = s[indexer]
expected = s[indexer[0]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"slc, positions",
[
[slice(date(2018, 1, 1), None), [0, 1, 2]],
[slice(date(2019, 1, 2), None), [2]],
[slice(date(2020, 1, 1), None), []],
[slice(None, date(2020, 1, 1)), [0, 1, 2]],
[slice(None, date(2019, 1, 1)), [0]],
],
)
def test_getitem_slice_date(self, slc, positions):
# https://github.com/pandas-dev/pandas/issues/31501
ser = Series(
[0, 1, 2],
DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
)
result = ser[slc]
expected = ser.take(positions)
tm.assert_series_equal(result, expected)
def test_getitem_slice_float_raises(self, datetime_series):
msg = (
"cannot do slice indexing on DatetimeIndex with these indexers "
r"\[{key}\] of type float"
)
with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
datetime_series[4.0:10.0]
with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
datetime_series[4.5:10.0]
def test_getitem_slice_bug(self):
ser = Series(range(10), index=list(range(10)))
result = ser[-12:]
tm.assert_series_equal(result, ser)
result = ser[-7:]
tm.assert_series_equal(result, ser[3:])
result = ser[:-12]
tm.assert_series_equal(result, ser[:0])
def test_getitem_slice_integers(self):
ser = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16])
with tm.assert_produces_warning(FutureWarning, match="label-based"):
result = ser[:4]
expected = Series(ser.values[:4], index=[2, 4, 6, 8])
tm.assert_series_equal(result, expected)
class TestSeriesGetitemListLike:
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
def test_getitem_no_matches(self, box):
# GH#33462 we expect the same behavior for list/ndarray/Index/Series
ser = Series(["A", "B"])
key = Series(["C"], dtype=object)
key = box(key)
msg = r"None of \[Index\(\['C'\], dtype='object'\)\] are in the \[index\]"
with pytest.raises(KeyError, match=msg):
ser[key]
def test_getitem_intlist_intindex_periodvalues(self):
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
result = ser[[2, 4]]
exp = Series(
[pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")],
index=[2, 4],
dtype="Period[D]",
)
tm.assert_series_equal(result, exp)
assert result.dtype == "Period[D]"
@pytest.mark.parametrize("box", [list, np.array, Index])
def test_getitem_intlist_intervalindex_non_int(self, box):
# GH#33404 fall back to positional since ints are unambiguous
dti = date_range("2000-01-03", periods=3)._with_freq(None)
ii = pd.IntervalIndex.from_breaks(dti)
ser = Series(range(len(ii)), index=ii)
expected = ser.iloc[:1]
key = box([0])
result = ser[key]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [list, np.array, Index])
@pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64])
def test_getitem_intlist_multiindex_numeric_level(self, dtype, box):
# GH#33404 do _not_ fall back to positional since ints are ambiguous
idx = Index(range(4)).astype(dtype)
dti = date_range("2000-01-03", periods=3)
mi = pd.MultiIndex.from_product([idx, dti])
ser = Series(range(len(mi))[::-1], index=mi)
key = box([5])
with pytest.raises(KeyError, match="5"):
ser[key]
def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype):
# GH #37218
ser = Series([1, 2, 3])
key = np.array([4], dtype=any_unsigned_int_numpy_dtype)
with pytest.raises(KeyError, match="4"):
ser[key]
with pytest.raises(KeyError, match="4"):
ser.loc[key]
class TestGetitemBooleanMask:
def test_getitem_boolean(self, string_series):
ser = string_series
mask = ser > ser.median()
# passing list is OK
result = ser[list(mask)]
expected = ser[mask]
tm.assert_series_equal(result, expected)
tm.assert_index_equal(result.index, ser.index[mask])
def test_getitem_boolean_empty(self):
ser = Series([], dtype=np.int64)
ser.index.name = "index_name"
ser = ser[ser.isna()]
assert ser.index.name == "index_name"
assert ser.dtype == np.int64
# GH#5877
# indexing with empty series
ser = Series(["A", "B"])
expected = Series(dtype=object, index=Index([], dtype="int64"))
result = ser[Series([], dtype=object)]
tm.assert_series_equal(result, expected)
# invalid because of the boolean indexer
# that's empty or not-aligned
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ser[Series([], dtype=bool)]
with pytest.raises(IndexingError, match=msg):
ser[Series([True], dtype=bool)]
def test_getitem_boolean_object(self, string_series):
# using column from DataFrame
ser = string_series
mask = ser > ser.median()
omask = mask.astype(object)
# getitem
result = ser[omask]
expected = ser[mask]
tm.assert_series_equal(result, expected)
# setitem
s2 = ser.copy()
cop = ser.copy()
cop[omask] = 5
s2[mask] = 5
tm.assert_series_equal(cop, s2)
# nans raise exception
omask[5:10] = np.nan
msg = "Cannot mask with non-boolean array containing NA / NaN values"
with pytest.raises(ValueError, match=msg):
ser[omask]
with pytest.raises(ValueError, match=msg):
ser[omask] = 5
def test_getitem_boolean_dt64_copies(self):
# GH#36210
dti = date_range("2016-01-01", periods=4, tz="US/Pacific")
key = np.array([True, True, False, False])
ser = Series(dti._data)
res = ser[key]
assert res._values._data.base is None
# compare with numeric case for reference
ser2 = Series(range(4))
res2 = ser2[key]
assert res2._values.base is None
def test_getitem_boolean_corner(self, datetime_series):
ts = datetime_series
mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
msg = (
r"Unalignable boolean Series provided as indexer \(index of "
r"the boolean Series and of the indexed object do not match"
)
with pytest.raises(IndexingError, match=msg):
ts[mask_shifted]
with pytest.raises(IndexingError, match=msg):
ts.loc[mask_shifted]
def test_getitem_boolean_different_order(self, string_series):
ordered = string_series.sort_values()
sel = string_series[ordered > 0]
exp = string_series[string_series > 0]
tm.assert_series_equal(sel, exp)
def test_getitem_boolean_contiguous_preserve_freq(self):
rng = date_range("1/1/2000", "3/1/2000", freq="B")
mask = np.zeros(len(rng), dtype=bool)
mask[10:20] = True
masked = rng[mask]
expected = rng[10:20]
assert expected.freq == rng.freq
tm.assert_index_equal(masked, expected)
mask[22] = True
masked = rng[mask]
assert masked.freq is None
class TestGetitemCallable:
def test_getitem_callable(self):
# GH#12533
ser = Series(4, index=list("ABCD"))
result = ser[lambda x: "A"]
assert result == ser.loc["A"]
result = ser[lambda x: ["A", "B"]]
expected = ser.loc[["A", "B"]]
tm.assert_series_equal(result, expected)
result = ser[lambda x: [True, False, True, True]]
expected = ser.iloc[[0, 2, 3]]
tm.assert_series_equal(result, expected)
def test_getitem_generator(string_series):
gen = (x > 0 for x in string_series)
result = string_series[gen]
result2 = string_series[iter(string_series > 0)]
expected = string_series[string_series > 0]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
@pytest.mark.parametrize(
"series",
[
Series([0, 1]),
Series(date_range("2012-01-01", periods=2)),
Series(date_range("2012-01-01", periods=2, tz="CET")),
],
)
def test_getitem_ndim_deprecated(series):
with tm.assert_produces_warning(
FutureWarning,
match="Support for multi-dimensional indexing",
):
result = series[:, None]
expected = np.asarray(series)[:, None]
tm.assert_numpy_array_equal(result, expected)
def test_getitem_multilevel_scalar_slice_not_implemented(
multiindex_year_month_day_dataframe_random_data,
):
# not implementing this for now
df = multiindex_year_month_day_dataframe_random_data
ser = df["A"]
msg = r"\(2000, slice\(3, 4, None\)\)"
with pytest.raises(TypeError, match=msg):
ser[2000, 3:4]
def test_getitem_dataframe_raises():
rng = list(range(10))
ser = Series(10, index=rng)
df = DataFrame(rng, index=rng)
msg = (
"Indexing a Series with DataFrame is not supported, "
"use the appropriate DataFrame column"
)
with pytest.raises(TypeError, match=msg):
ser[df > 5]
def test_getitem_assignment_series_aligment():
# https://github.com/pandas-dev/pandas/issues/37427
# with getitem, when assigning with a Series, it is not first aligned
ser = Series(range(10))
idx = np.array([2, 4, 9])
ser[idx] = Series([10, 11, 12])
expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12])
tm.assert_series_equal(ser, expected)
def test_getitem_duplicate_index_mistyped_key_raises_keyerror():
# GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError
ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
with pytest.raises(KeyError, match="None"):
ser[None]
with pytest.raises(KeyError, match="None"):
ser.index.get_loc(None)
with pytest.raises(KeyError, match="None"):
ser.index._engine.get_loc(None)
def test_getitem_1tuple_slice_without_multiindex():
ser = Series(range(5))
key = (slice(3),)
result = ser[key]
expected = ser[key[0]]
tm.assert_series_equal(result, expected)
def test_getitem_preserve_name(datetime_series):
result = datetime_series[datetime_series > 0]
assert result.name == datetime_series.name
result = datetime_series[[0, 2, 4]]
assert result.name == datetime_series.name
result = datetime_series[5:10]
assert result.name == datetime_series.name
def test_getitem_with_integer_labels():
# integer indexes, be careful
ser = Series(np.random.randn(10), index=list(range(0, 20, 2)))
inds = [0, 2, 5, 7, 8]
arr_inds = np.array([0, 2, 5, 7, 8])
with pytest.raises(KeyError, match="not in index"):
ser[inds]
with pytest.raises(KeyError, match="not in index"):
ser[arr_inds]
def test_getitem_missing(datetime_series):
# missing
d = datetime_series.index[0] - BDay()
msg = r"Timestamp\('1999-12-31 00:00:00', freq='B'\)"
with pytest.raises(KeyError, match=msg):
datetime_series[d]
def test_getitem_fancy(string_series, object_series):
slice1 = string_series[[1, 2, 3]]
slice2 = object_series[[1, 2, 3]]
assert string_series.index[2] == slice1.index[1]
assert object_series.index[2] == slice2.index[1]
assert string_series[2] == slice1[1]
assert object_series[2] == slice2[1]
def test_getitem_box_float64(datetime_series):
value = datetime_series[5]
assert isinstance(value, np.float64)
def test_getitem_unordered_dup():
obj = Series(range(5), index=["c", "a", "a", "b", "b"])
assert is_scalar(obj["c"])
assert obj["c"] == 0
def test_getitem_dups():
ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64)
expected = Series([3, 4], index=["C", "C"], dtype=np.int64)
result = ser["C"]
tm.assert_series_equal(result, expected)
def test_getitem_categorical_str():
# GH#31765
ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"]))
result = ser["a"]
expected = ser.iloc[[0, 3]]
tm.assert_series_equal(result, expected)
# Check the intermediate steps work as expected
with tm.assert_produces_warning(FutureWarning):
result = ser.index.get_value(ser, "a")
tm.assert_series_equal(result, expected)
def test_slice_can_reorder_not_uniquely_indexed():
ser = Series(1, index=["a", "a", "b", "b", "c"])
ser[::-1] # it works!
@pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"])
def test_duplicated_index_getitem_positional_indexer(index_vals):
# GH 11747
s = Series(range(5), index=list(index_vals))
result = s[3]
assert result == 3
class TestGetitemDeprecatedIndexers:
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_getitem_dict_and_set_deprecated(self, key):
# GH#42825
ser = Series([1, 2, 3])
with tm.assert_produces_warning(FutureWarning):
ser[key]
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_setitem_dict_and_set_deprecated(self, key):
# GH#42825
ser = Series([1, 2, 3])
with tm.assert_produces_warning(FutureWarning):
ser[key] = 1