forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_arithmetic.py
178 lines (129 loc) · 5.63 KB
/
test_arithmetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from typing import Any, List
import numpy as np
import pytest
from pandas.compat import is_numpy_dev
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ExtensionArray
# integer dtypes
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_EA_INT_DTYPES]
scalars: List[Any] = [2] * len(arrays)
# floating dtypes
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
scalars += [0.2, 0.2]
# boolean
arrays += [pd.array([True, False, True, None], dtype="boolean")]
scalars += [False]
@pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
def data(request):
return request.param
def check_skip(data, op_name):
if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
pytest.skip("subtract not implemented for boolean")
# Test equivalence of scalars, numpy arrays with array ops
# -----------------------------------------------------------------------------
def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
# TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
for scalar in [scalar, data.dtype.type(scalar)]:
result = op(data, scalar)
expected = op(data, scalar_array)
tm.assert_extension_array_equal(result, expected)
def test_array_NA(data, all_arithmetic_operators):
if "truediv" in all_arithmetic_operators:
pytest.skip("division with pd.NA raises")
if "floordiv" in all_arithmetic_operators and is_numpy_dev:
pytest.skip("NumpyDev behavior GH#40874")
data, _ = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
scalar = pd.NA
scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
result = op(data, scalar)
expected = op(data, scalar_array)
tm.assert_extension_array_equal(result, expected)
def test_numpy_array_equivalence(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
pd_array = pd.array(numpy_array, dtype=data.dtype)
result = op(data, numpy_array)
expected = op(data, pd_array)
if isinstance(expected, ExtensionArray):
tm.assert_extension_array_equal(result, expected)
else:
# TODO div still gives float ndarray -> remove this once we have Float EA
tm.assert_numpy_array_equal(result, expected)
# Test equivalence with Series and DataFrame ops
# -----------------------------------------------------------------------------
def test_frame(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
# DataFrame with scalar
df = pd.DataFrame({"A": data})
result = op(df, scalar)
expected = pd.DataFrame({"A": op(data, scalar)})
tm.assert_frame_equal(result, expected)
def test_series(data, all_arithmetic_operators):
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
check_skip(data, all_arithmetic_operators)
s = pd.Series(data)
# Series with scalar
result = op(s, scalar)
expected = pd.Series(op(data, scalar))
tm.assert_series_equal(result, expected)
# Series with np.ndarray
other = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
result = op(s, other)
expected = pd.Series(op(data, other))
tm.assert_series_equal(result, expected)
# Series with pd.array
other = pd.array([scalar] * len(data), dtype=data.dtype)
result = op(s, other)
expected = pd.Series(op(data, other))
tm.assert_series_equal(result, expected)
# Series with Series
other = pd.Series([scalar] * len(data), dtype=data.dtype)
result = op(s, other)
expected = pd.Series(op(data, other.array))
tm.assert_series_equal(result, expected)
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
def test_error_invalid_object(data, all_arithmetic_operators):
data, _ = data
op = all_arithmetic_operators
opa = getattr(data, op)
# 2d -> return NotImplemented
result = opa(pd.DataFrame({"A": data}))
assert result is NotImplemented
msg = r"can only perform ops with 1-d structures"
with pytest.raises(NotImplementedError, match=msg):
opa(np.arange(len(data)).reshape(-1, len(data)))
def test_error_len_mismatch(data, all_arithmetic_operators):
# operating with a list-like with non-matching length raises
data, scalar = data
op = tm.get_op_from_name(all_arithmetic_operators)
other = [scalar] * (len(data) - 1)
for other in [other, np.array(other)]:
with pytest.raises(ValueError, match="Lengths must match"):
op(data, other)
s = pd.Series(data)
with pytest.raises(ValueError, match="Lengths must match"):
op(s, other)
@pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
@pytest.mark.parametrize(
"values, dtype", [([1, 2, 3], "Int64"), ([True, False, True], "boolean")]
)
def test_unary_op_does_not_propagate_mask(op, values, dtype):
# https://github.com/pandas-dev/pandas/issues/39943
s = pd.Series(values, dtype=dtype)
result = getattr(s, op)()
expected = result.copy(deep=True)
s[0] = None
tm.assert_series_equal(result, expected)