forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_join.py
571 lines (455 loc) · 16.9 KB
/
test_join.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
from datetime import datetime
import numpy as np
import pytest
from pandas.errors import MergeError
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
date_range,
period_range,
)
import pandas._testing as tm
from pandas.core.reshape.concat import concat
@pytest.fixture
def frame_with_period_index():
return DataFrame(
data=np.arange(20).reshape(4, 5),
columns=list("abcde"),
index=period_range(start="2000", freq="A", periods=4),
)
@pytest.fixture
def left():
return DataFrame({"a": [20, 10, 0]}, index=[2, 1, 0])
@pytest.fixture
def right():
return DataFrame({"b": [300, 100, 200]}, index=[3, 1, 2])
@pytest.fixture
def left_no_dup():
return DataFrame(
{"a": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"]},
index=range(4),
)
@pytest.fixture
def right_no_dup():
return DataFrame(
{
"a": ["a", "b", "c", "d", "e"],
"c": ["meow", "bark", "um... weasel noise?", "nay", "chirp"],
},
index=range(5),
).set_index("a")
@pytest.fixture
def left_w_dups(left_no_dup):
return concat(
[left_no_dup, DataFrame({"a": ["a"], "b": ["cow"]}, index=[3])], sort=True
)
@pytest.fixture
def right_w_dups(right_no_dup):
return concat(
[right_no_dup, DataFrame({"a": ["e"], "c": ["moo"]}, index=[3])]
).set_index("a")
@pytest.mark.parametrize(
"how, sort, expected",
[
("inner", False, DataFrame({"a": [20, 10], "b": [200, 100]}, index=[2, 1])),
("inner", True, DataFrame({"a": [10, 20], "b": [100, 200]}, index=[1, 2])),
(
"left",
False,
DataFrame({"a": [20, 10, 0], "b": [200, 100, np.nan]}, index=[2, 1, 0]),
),
(
"left",
True,
DataFrame({"a": [0, 10, 20], "b": [np.nan, 100, 200]}, index=[0, 1, 2]),
),
(
"right",
False,
DataFrame({"a": [np.nan, 10, 20], "b": [300, 100, 200]}, index=[3, 1, 2]),
),
(
"right",
True,
DataFrame({"a": [10, 20, np.nan], "b": [100, 200, 300]}, index=[1, 2, 3]),
),
(
"outer",
False,
DataFrame(
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3],
),
),
(
"outer",
True,
DataFrame(
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3],
),
),
],
)
def test_join(left, right, how, sort, expected):
result = left.join(right, how=how, sort=sort, validate="1:1")
tm.assert_frame_equal(result, expected)
def test_suffix_on_list_join():
first = DataFrame({"key": [1, 2, 3, 4, 5]})
second = DataFrame({"key": [1, 8, 3, 2, 5], "v1": [1, 2, 3, 4, 5]})
third = DataFrame({"keys": [5, 2, 3, 4, 1], "v2": [1, 2, 3, 4, 5]})
# check proper errors are raised
msg = "Suffixes not supported when joining multiple DataFrames"
with pytest.raises(ValueError, match=msg):
first.join([second], lsuffix="y")
with pytest.raises(ValueError, match=msg):
first.join([second, third], rsuffix="x")
with pytest.raises(ValueError, match=msg):
first.join([second, third], lsuffix="y", rsuffix="x")
with pytest.raises(ValueError, match="Indexes have overlapping values"):
first.join([second, third])
# no errors should be raised
arr_joined = first.join([third])
norm_joined = first.join(third)
tm.assert_frame_equal(arr_joined, norm_joined)
def test_join_invalid_validate(left_no_dup, right_no_dup):
# GH 46622
# Check invalid arguments
msg = (
'"invalid" is not a valid argument. '
"Valid arguments are:\n"
'- "1:1"\n'
'- "1:m"\n'
'- "m:1"\n'
'- "m:m"\n'
'- "one_to_one"\n'
'- "one_to_many"\n'
'- "many_to_one"\n'
'- "many_to_many"'
)
with pytest.raises(ValueError, match=msg):
left_no_dup.merge(right_no_dup, on="a", validate="invalid")
def test_join_on_single_col_dup_on_right(left_no_dup, right_w_dups):
# GH 46622
# Dups on right allowed by one_to_many constraint
left_no_dup.join(
right_w_dups,
on="a",
validate="one_to_many",
)
# Dups on right not allowed by one_to_one constraint
msg = "Merge keys are not unique in right dataset; not a one-to-one merge"
with pytest.raises(MergeError, match=msg):
left_no_dup.join(
right_w_dups,
on="a",
validate="one_to_one",
)
def test_join_on_single_col_dup_on_left(left_w_dups, right_no_dup):
# GH 46622
# Dups on left allowed by many_to_one constraint
left_w_dups.join(
right_no_dup,
on="a",
validate="many_to_one",
)
# Dups on left not allowed by one_to_one constraint
msg = "Merge keys are not unique in left dataset; not a one-to-one merge"
with pytest.raises(MergeError, match=msg):
left_w_dups.join(
right_no_dup,
on="a",
validate="one_to_one",
)
def test_join_on_single_col_dup_on_both(left_w_dups, right_w_dups):
# GH 46622
# Dups on both allowed by many_to_many constraint
left_w_dups.join(right_w_dups, on="a", validate="many_to_many")
# Dups on both not allowed by many_to_one constraint
msg = "Merge keys are not unique in right dataset; not a many-to-one merge"
with pytest.raises(MergeError, match=msg):
left_w_dups.join(
right_w_dups,
on="a",
validate="many_to_one",
)
# Dups on both not allowed by one_to_many constraint
msg = "Merge keys are not unique in left dataset; not a one-to-many merge"
with pytest.raises(MergeError, match=msg):
left_w_dups.join(
right_w_dups,
on="a",
validate="one_to_many",
)
def test_join_on_multi_col_check_dup():
# GH 46622
# Two column join, dups in both, but jointly no dups
left = DataFrame(
{
"a": ["a", "a", "b", "b"],
"b": [0, 1, 0, 1],
"c": ["cat", "dog", "weasel", "horse"],
},
index=range(4),
).set_index(["a", "b"])
right = DataFrame(
{
"a": ["a", "a", "b"],
"b": [0, 1, 0],
"d": ["meow", "bark", "um... weasel noise?"],
},
index=range(3),
).set_index(["a", "b"])
expected_multi = DataFrame(
{
"a": ["a", "a", "b"],
"b": [0, 1, 0],
"c": ["cat", "dog", "weasel"],
"d": ["meow", "bark", "um... weasel noise?"],
},
index=range(3),
).set_index(["a", "b"])
# Jointly no dups allowed by one_to_one constraint
result = left.join(right, how="inner", validate="1:1")
tm.assert_frame_equal(result, expected_multi)
def test_join_index(float_frame):
# left / right
f = float_frame.loc[float_frame.index[:10], ["A", "B"]]
f2 = float_frame.loc[float_frame.index[5:], ["C", "D"]].iloc[::-1]
joined = f.join(f2)
tm.assert_index_equal(f.index, joined.index)
expected_columns = Index(["A", "B", "C", "D"])
tm.assert_index_equal(joined.columns, expected_columns)
joined = f.join(f2, how="left")
tm.assert_index_equal(joined.index, f.index)
tm.assert_index_equal(joined.columns, expected_columns)
joined = f.join(f2, how="right")
tm.assert_index_equal(joined.index, f2.index)
tm.assert_index_equal(joined.columns, expected_columns)
# inner
joined = f.join(f2, how="inner")
tm.assert_index_equal(joined.index, f.index[5:10])
tm.assert_index_equal(joined.columns, expected_columns)
# outer
joined = f.join(f2, how="outer")
tm.assert_index_equal(joined.index, float_frame.index.sort_values())
tm.assert_index_equal(joined.columns, expected_columns)
with pytest.raises(ValueError, match="join method"):
f.join(f2, how="foo")
# corner case - overlapping columns
msg = "columns overlap but no suffix"
for how in ("outer", "left", "inner"):
with pytest.raises(ValueError, match=msg):
float_frame.join(float_frame, how=how)
def test_join_index_more(float_frame):
af = float_frame.loc[:, ["A", "B"]]
bf = float_frame.loc[::2, ["C", "D"]]
expected = af.copy()
expected["C"] = float_frame["C"][::2]
expected["D"] = float_frame["D"][::2]
result = af.join(bf)
tm.assert_frame_equal(result, expected)
result = af.join(bf, how="right")
tm.assert_frame_equal(result, expected[::2])
result = bf.join(af, how="right")
tm.assert_frame_equal(result, expected.loc[:, result.columns])
def test_join_index_series(float_frame):
df = float_frame.copy()
ser = df.pop(float_frame.columns[-1])
joined = df.join(ser)
tm.assert_frame_equal(joined, float_frame)
ser.name = None
with pytest.raises(ValueError, match="must have a name"):
df.join(ser)
def test_join_overlap(float_frame):
df1 = float_frame.loc[:, ["A", "B", "C"]]
df2 = float_frame.loc[:, ["B", "C", "D"]]
joined = df1.join(df2, lsuffix="_df1", rsuffix="_df2")
df1_suf = df1.loc[:, ["B", "C"]].add_suffix("_df1")
df2_suf = df2.loc[:, ["B", "C"]].add_suffix("_df2")
no_overlap = float_frame.loc[:, ["A", "D"]]
expected = df1_suf.join(df2_suf).join(no_overlap)
# column order not necessarily sorted
tm.assert_frame_equal(joined, expected.loc[:, joined.columns])
def test_join_period_index(frame_with_period_index):
other = frame_with_period_index.rename(columns=lambda key: f"{key}{key}")
joined_values = np.concatenate([frame_with_period_index.values] * 2, axis=1)
joined_cols = frame_with_period_index.columns.append(other.columns)
joined = frame_with_period_index.join(other)
expected = DataFrame(
data=joined_values, columns=joined_cols, index=frame_with_period_index.index
)
tm.assert_frame_equal(joined, expected)
def test_join_left_sequence_non_unique_index():
# https://github.com/pandas-dev/pandas/issues/19607
df1 = DataFrame({"a": [0, 10, 20]}, index=[1, 2, 3])
df2 = DataFrame({"b": [100, 200, 300]}, index=[4, 3, 2])
df3 = DataFrame({"c": [400, 500, 600]}, index=[2, 2, 4])
joined = df1.join([df2, df3], how="left")
expected = DataFrame(
{
"a": [0, 10, 10, 20],
"b": [np.nan, 300, 300, 200],
"c": [np.nan, 400, 500, np.nan],
},
index=[1, 2, 2, 3],
)
tm.assert_frame_equal(joined, expected)
def test_join_list_series(float_frame):
# GH#46850
# Join a DataFrame with a list containing both a Series and a DataFrame
left = float_frame.A.to_frame()
right = [float_frame.B, float_frame[["C", "D"]]]
result = left.join(right)
tm.assert_frame_equal(result, float_frame)
@pytest.mark.parametrize("sort_kw", [True, False])
def test_suppress_future_warning_with_sort_kw(sort_kw):
a = DataFrame({"col1": [1, 2]}, index=["c", "a"])
b = DataFrame({"col2": [4, 5]}, index=["b", "a"])
c = DataFrame({"col3": [7, 8]}, index=["a", "b"])
expected = DataFrame(
{
"col1": {"a": 2.0, "b": float("nan"), "c": 1.0},
"col2": {"a": 5.0, "b": 4.0, "c": float("nan")},
"col3": {"a": 7.0, "b": 8.0, "c": float("nan")},
}
)
if sort_kw is False:
expected = expected.reindex(index=["c", "a", "b"])
with tm.assert_produces_warning(None):
result = a.join([b, c], how="outer", sort=sort_kw)
tm.assert_frame_equal(result, expected)
class TestDataFrameJoin:
def test_join(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
a = frame.loc[frame.index[:5], ["A"]]
b = frame.loc[frame.index[2:], ["B", "C"]]
joined = a.join(b, how="outer").reindex(frame.index)
expected = frame.copy().values.copy()
expected[np.isnan(joined.values)] = np.nan
expected = DataFrame(expected, index=frame.index, columns=frame.columns)
assert not np.isnan(joined.values).all()
tm.assert_frame_equal(joined, expected)
def test_join_segfault(self):
# GH#1532
df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
df1 = df1.set_index(["a", "b"])
df2 = df2.set_index(["a", "b"])
# it works!
for how in ["left", "right", "outer"]:
df1.join(df2, how=how)
def test_join_str_datetime(self):
str_dates = ["20120209", "20120222"]
dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
A = DataFrame(str_dates, index=range(2), columns=["aa"])
C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates)
tst = A.join(C, on="aa")
assert len(tst.columns) == 3
def test_join_multiindex_leftright(self):
# GH 10741
df1 = DataFrame(
[
["a", "x", 0.471780],
["a", "y", 0.774908],
["a", "z", 0.563634],
["b", "x", -0.353756],
["b", "y", 0.368062],
["b", "z", -1.721840],
["c", "x", 1],
["c", "y", 2],
["c", "z", 3],
],
columns=["first", "second", "value1"],
).set_index(["first", "second"])
df2 = DataFrame([["a", 10], ["b", 20]], columns=["first", "value2"]).set_index(
["first"]
)
exp = DataFrame(
[
[0.471780, 10],
[0.774908, 10],
[0.563634, 10],
[-0.353756, 20],
[0.368062, 20],
[-1.721840, 20],
[1.000000, np.nan],
[2.000000, np.nan],
[3.000000, np.nan],
],
index=df1.index,
columns=["value1", "value2"],
)
# these must be the same results (but columns are flipped)
tm.assert_frame_equal(df1.join(df2, how="left"), exp)
tm.assert_frame_equal(df2.join(df1, how="right"), exp[["value2", "value1"]])
exp_idx = MultiIndex.from_product(
[["a", "b"], ["x", "y", "z"]], names=["first", "second"]
)
exp = DataFrame(
[
[0.471780, 10],
[0.774908, 10],
[0.563634, 10],
[-0.353756, 20],
[0.368062, 20],
[-1.721840, 20],
],
index=exp_idx,
columns=["value1", "value2"],
)
tm.assert_frame_equal(df1.join(df2, how="right"), exp)
tm.assert_frame_equal(df2.join(df1, how="left"), exp[["value2", "value1"]])
def test_join_multiindex_dates(self):
# GH 33692
date = pd.Timestamp(2000, 1, 1).date()
df1_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
df1 = DataFrame({"col1": [0]}, index=df1_index)
df2_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
df2 = DataFrame({"col2": [0]}, index=df2_index)
df3_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
df3 = DataFrame({"col3": [0]}, index=df3_index)
result = df1.join([df2, df3])
expected_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
expected = DataFrame(
{"col1": [0], "col2": [0], "col3": [0]}, index=expected_index
)
tm.assert_equal(result, expected)
def test_merge_join_different_levels_raises(self):
# GH#9455
# GH 40993: For raising, enforced in 2.0
# first dataframe
df1 = DataFrame(columns=["a", "b"], data=[[1, 11], [0, 22]])
# second dataframe
columns = MultiIndex.from_tuples([("a", ""), ("c", "c1")])
df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]])
# merge
with pytest.raises(
MergeError, match="Not allowed to merge between different levels"
):
pd.merge(df1, df2, on="a")
# join, see discussion in GH#12219
with pytest.raises(
MergeError, match="Not allowed to merge between different levels"
):
df1.join(df2, on="a")
def test_frame_join_tzaware(self):
test1 = DataFrame(
np.zeros((6, 3)),
index=date_range(
"2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central"
),
)
test2 = DataFrame(
np.zeros((3, 3)),
index=date_range(
"2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"
),
columns=range(3, 6),
)
result = test1.join(test2, how="outer")
expected = test1.index.union(test2.index)
tm.assert_index_equal(result.index, expected)
assert result.index.tz.zone == "US/Central"