forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_misc.py
610 lines (512 loc) · 17.6 KB
/
_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
from __future__ import annotations
from contextlib import contextmanager
from typing import (
TYPE_CHECKING,
Iterator,
)
from pandas.plotting._core import _get_plot_backend
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.figure import Figure
import numpy as np
from pandas import (
DataFrame,
Series,
)
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
ax : Matplotlib axes object
data : DataFrame or Series
Data for table contents.
**kwargs
Keyword arguments to be passed to matplotlib.table.table.
If `rowLabels` or `colLabels` is not specified, data index or column
name will be used.
Returns
-------
matplotlib table object
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.table(
ax=ax, data=data, rowLabels=None, colLabels=None, **kwargs
)
def register() -> None:
"""
Register pandas formatters and converters with matplotlib.
This function modifies the global ``matplotlib.units.registry``
dictionary. pandas adds custom converters for
* pd.Timestamp
* pd.Period
* np.datetime64
* datetime.datetime
* datetime.date
* datetime.time
See Also
--------
deregister_matplotlib_converters : Remove pandas formatters and converters.
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.register()
def deregister() -> None:
"""
Remove pandas formatters and converters.
Removes the custom converters added by :func:`register`. This
attempts to set the state of the registry back to the state before
pandas registered its own units. Converters for pandas' own types like
Timestamp and Period are removed completely. Converters for types
pandas overwrites, like ``datetime.datetime``, are restored to their
original value.
See Also
--------
register_matplotlib_converters : Register pandas formatters and converters
with matplotlib.
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.deregister()
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax: Axes | None = None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds=None,
hist_kwds=None,
range_padding: float = 0.05,
**kwargs,
) -> np.ndarray:
"""
Draw a matrix of scatter plots.
Parameters
----------
frame : DataFrame
alpha : float, optional
Amount of transparency applied.
figsize : (float,float), optional
A tuple (width, height) in inches.
ax : Matplotlib axis object, optional
grid : bool, optional
Setting this to True will show the grid.
diagonal : {'hist', 'kde'}
Pick between 'kde' and 'hist' for either Kernel Density Estimation or
Histogram plot in the diagonal.
marker : str, optional
Matplotlib marker type, default '.'.
density_kwds : keywords
Keyword arguments to be passed to kernel density estimate plot.
hist_kwds : keywords
Keyword arguments to be passed to hist function.
range_padding : float, default 0.05
Relative extension of axis range in x and y with respect to
(x_max - x_min) or (y_max - y_min).
**kwargs
Keyword arguments to be passed to scatter function.
Returns
-------
numpy.ndarray
A matrix of scatter plots.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
array([[<AxesSubplot: xlabel='A', ylabel='A'>,
<AxesSubplot: xlabel='B', ylabel='A'>,
<AxesSubplot: xlabel='C', ylabel='A'>,
<AxesSubplot: xlabel='D', ylabel='A'>],
[<AxesSubplot: xlabel='A', ylabel='B'>,
<AxesSubplot: xlabel='B', ylabel='B'>,
<AxesSubplot: xlabel='C', ylabel='B'>,
<AxesSubplot: xlabel='D', ylabel='B'>],
[<AxesSubplot: xlabel='A', ylabel='C'>,
<AxesSubplot: xlabel='B', ylabel='C'>,
<AxesSubplot: xlabel='C', ylabel='C'>,
<AxesSubplot: xlabel='D', ylabel='C'>],
[<AxesSubplot: xlabel='A', ylabel='D'>,
<AxesSubplot: xlabel='B', ylabel='D'>,
<AxesSubplot: xlabel='C', ylabel='D'>,
<AxesSubplot: xlabel='D', ylabel='D'>]], dtype=object)
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.scatter_matrix(
frame=frame,
alpha=alpha,
figsize=figsize,
ax=ax,
grid=grid,
diagonal=diagonal,
marker=marker,
density_kwds=density_kwds,
hist_kwds=hist_kwds,
range_padding=range_padding,
**kwargs,
)
def radviz(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
colormap=None,
**kwds,
) -> Axes:
"""
Plot a multidimensional dataset in 2D.
Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
the value on each Series. Highly correlated `Series` in the `DataFrame`
are placed closer on the unit circle.
RadViz allow to project a N-dimensional data set into a 2D space where the
influence of each dimension can be interpreted as a balance between the
influence of all dimensions.
More info available at the `original article
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889>`_
describing RadViz.
Parameters
----------
frame : `DataFrame`
Object holding the data.
class_column : str
Column name containing the name of the data point category.
ax : :class:`matplotlib.axes.Axes`, optional
A plot instance to which to add the information.
color : list[str] or tuple[str], optional
Assign a color to each category. Example: ['blue', 'green'].
colormap : str or :class:`matplotlib.colors.Colormap`, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
**kwds
Options to pass to matplotlib scatter plotting method.
Returns
-------
class:`matplotlib.axes.Axes`
See Also
--------
plotting.andrews_curves : Plot clustering visualization.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(
... {
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6],
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6],
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0],
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2],
... 'Category': [
... 'virginica',
... 'virginica',
... 'setosa',
... 'virginica',
... 'virginica',
... 'versicolor',
... 'versicolor',
... 'setosa',
... 'virginica',
... 'setosa'
... ]
... }
... )
>>> pd.plotting.radviz(df, 'Category')
<AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.radviz(
frame=frame,
class_column=class_column,
ax=ax,
color=color,
colormap=colormap,
**kwds,
)
def andrews_curves(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
samples: int = 200,
color: list[str] | tuple[str, ...] | None = None,
colormap=None,
**kwargs,
) -> Axes:
"""
Generate a matplotlib plot for visualising clusters of multivariate data.
Andrews curves have the functional form:
f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) +
x_4 sin(2t) + x_5 cos(2t) + ...
Where x coefficients correspond to the values of each dimension and t is
linearly spaced between -pi and +pi. Each row of frame then corresponds to
a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0).
class_column : Name of the column containing class names
ax : matplotlib axes object, default None
samples : Number of points to plot in each curve
color : list or tuple, optional
Colors to use for the different classes.
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name
from matplotlib.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
class:`matplotlip.axis.Axes`
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.github.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.andrews_curves(df, 'Name')
<AxesSubplot: title={'center': 'width'}>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.andrews_curves(
frame=frame,
class_column=class_column,
ax=ax,
samples=samples,
color=color,
colormap=colormap,
**kwargs,
)
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
"""
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relaying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
less than or equal to the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
DataFrame.plot : Basic plotting for DataFrame objects.
Series.plot : Basic plotting for Series objects.
Examples
--------
This example draws a basic bootstrap plot for a Series.
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> pd.plotting.bootstrap_plot(s)
<Figure size 640x480 with 6 Axes>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.bootstrap_plot(
series=series, fig=fig, size=size, samples=samples, **kwds
)
def parallel_coordinates(
frame: DataFrame,
class_column: str,
cols: list[str] | None = None,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
use_columns: bool = False,
xticks: list | tuple | None = None,
colormap=None,
axvlines: bool = True,
axvlines_kwds=None,
sort_labels: bool = False,
**kwargs,
) -> Axes:
"""
Parallel coordinates plotting.
Parameters
----------
frame : DataFrame
class_column : str
Column name containing class names.
cols : list, optional
A list of column names to use.
ax : matplotlib.axis, optional
Matplotlib axis object.
color : list or tuple, optional
Colors to use for the different classes.
use_columns : bool, optional
If true, columns will be used as xticks.
xticks : list or tuple, optional
A list of values to use for xticks.
colormap : str or matplotlib colormap, default None
Colormap to use for line colors.
axvlines : bool, optional
If true, vertical lines will be added at each xtick.
axvlines_kwds : keywords, optional
Options to be passed to axvline method for vertical lines.
sort_labels : bool, default False
Sort class_column labels, useful when assigning colors.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
class:`matplotlib.axis.Axes`
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.github.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.parallel_coordinates(
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
... )
<AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.parallel_coordinates(
frame=frame,
class_column=class_column,
cols=cols,
ax=ax,
color=color,
use_columns=use_columns,
xticks=xticks,
colormap=colormap,
axvlines=axvlines,
axvlines_kwds=axvlines_kwds,
sort_labels=sort_labels,
**kwargs,
)
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
"""
Lag plot for time series.
Parameters
----------
series : Time series
lag : lag of the scatter plot, default 1
ax : Matplotlib axis object, optional
**kwds
Matplotlib scatter method keyword arguments.
Returns
-------
class:`matplotlib.axis.Axes`
Examples
--------
Lag plots are most commonly used to look for patterns in time series data.
Given the following time series
.. plot::
:context: close-figs
>>> np.random.seed(5)
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
>>> s = pd.Series(x)
>>> s.plot()
<AxesSubplot: xlabel='Midrange'>
A lag plot with ``lag=1`` returns
.. plot::
:context: close-figs
>>> pd.plotting.lag_plot(s, lag=1)
<AxesSubplot: xlabel='y(t)', ylabel='y(t + 1)'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds)
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes:
"""
Autocorrelation plot for time series.
Parameters
----------
series : Time series
ax : Matplotlib axis object, optional
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
class:`matplotlib.axis.Axes`
Examples
--------
The horizontal lines in the plot correspond to 95% and 99% confidence bands.
The dashed line is 99% confidence band.
.. plot::
:context: close-figs
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
>>> pd.plotting.autocorrelation_plot(s)
<AxesSubplot: title={'center': 'width'}, xlabel='Lag', ylabel='Autocorrelation'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.autocorrelation_plot(series=series, ax=ax, **kwargs)
class _Options(dict):
"""
Stores pandas plotting options.
Allows for parameter aliasing so you can just use parameter names that are
the same as the plot function parameters, but is stored in a canonical
format that makes it easy to breakdown into groups later.
"""
# alias so the names are same as plotting method parameter names
_ALIASES = {"x_compat": "xaxis.compat"}
_DEFAULT_KEYS = ["xaxis.compat"]
def __init__(self, deprecated: bool = False) -> None:
self._deprecated = deprecated
super().__setitem__("xaxis.compat", False)
def __getitem__(self, key):
key = self._get_canonical_key(key)
if key not in self:
raise ValueError(f"{key} is not a valid pandas plotting option")
return super().__getitem__(key)
def __setitem__(self, key, value) -> None:
key = self._get_canonical_key(key)
super().__setitem__(key, value)
def __delitem__(self, key) -> None:
key = self._get_canonical_key(key)
if key in self._DEFAULT_KEYS:
raise ValueError(f"Cannot remove default parameter {key}")
super().__delitem__(key)
def __contains__(self, key) -> bool:
key = self._get_canonical_key(key)
return super().__contains__(key)
def reset(self) -> None:
"""
Reset the option store to its initial state
Returns
-------
None
"""
# error: Cannot access "__init__" directly
self.__init__() # type: ignore[misc]
def _get_canonical_key(self, key):
return self._ALIASES.get(key, key)
@contextmanager
def use(self, key, value) -> Iterator[_Options]:
"""
Temporarily set a parameter value using the with statement.
Aliasing allowed.
"""
old_value = self[key]
try:
self[key] = value
yield self
finally:
self[key] = old_value
plot_params = _Options()