forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanops.py
795 lines (629 loc) · 23.3 KB
/
nanops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import itertools
import functools
import numpy as np
import operator
try:
import bottleneck as bn
_USE_BOTTLENECK = True
except ImportError: # pragma: no cover
_USE_BOTTLENECK = False
import pandas.hashtable as _hash
from pandas import compat, lib, algos, tslib
from pandas.core.common import (isnull, notnull, _values_from_object,
_maybe_upcast_putmask, _ensure_float64,
_ensure_int64, _ensure_object, is_float,
is_integer, is_complex, is_float_dtype,
is_complex_dtype, is_integer_dtype,
is_bool_dtype, is_object_dtype,
is_datetime64_dtype, is_timedelta64_dtype,
is_datetime_or_timedelta_dtype, _get_dtype,
is_int_or_datetime_dtype, is_any_int_dtype,
_int64_max)
class disallow(object):
def __init__(self, *dtypes):
super(disallow, self).__init__()
self.dtypes = tuple(np.dtype(dtype).type for dtype in dtypes)
def check(self, obj):
return hasattr(obj, 'dtype') and issubclass(obj.dtype.type,
self.dtypes)
def __call__(self, f):
@functools.wraps(f)
def _f(*args, **kwargs):
obj_iter = itertools.chain(args, compat.itervalues(kwargs))
if any(self.check(obj) for obj in obj_iter):
raise TypeError('reduction operation {0!r} not allowed for '
'this dtype'.format(
f.__name__.replace('nan', '')))
try:
return f(*args, **kwargs)
except ValueError as e:
# we want to transform an object array
# ValueError message to the more typical TypeError
# e.g. this is normally a disallowed function on
# object arrays that contain strings
if is_object_dtype(args[0]):
raise TypeError(e)
raise
return _f
class bottleneck_switch(object):
def __init__(self, zero_value=None, **kwargs):
self.zero_value = zero_value
self.kwargs = kwargs
def __call__(self, alt):
bn_name = alt.__name__
try:
bn_func = getattr(bn, bn_name)
except (AttributeError, NameError): # pragma: no cover
bn_func = None
@functools.wraps(alt)
def f(values, axis=None, skipna=True, **kwds):
if len(self.kwargs) > 0:
for k, v in compat.iteritems(self.kwargs):
if k not in kwds:
kwds[k] = v
try:
if self.zero_value is not None and values.size == 0:
if values.ndim == 1:
# wrap the 0's if needed
if is_timedelta64_dtype(values):
return lib.Timedelta(0)
return 0
else:
result_shape = (values.shape[:axis] +
values.shape[axis + 1:])
result = np.empty(result_shape)
result.fill(0)
return result
if (_USE_BOTTLENECK and skipna and
_bn_ok_dtype(values.dtype, bn_name)):
result = bn_func(values, axis=axis, **kwds)
# prefer to treat inf/-inf as NA, but must compute the func
# twice :(
if _has_infs(result):
result = alt(values, axis=axis, skipna=skipna, **kwds)
else:
result = alt(values, axis=axis, skipna=skipna, **kwds)
except Exception:
try:
result = alt(values, axis=axis, skipna=skipna, **kwds)
except ValueError as e:
# we want to transform an object array
# ValueError message to the more typical TypeError
# e.g. this is normally a disallowed function on
# object arrays that contain strings
if is_object_dtype(values):
raise TypeError(e)
raise
return result
return f
def _bn_ok_dtype(dt, name):
# Bottleneck chokes on datetime64
if (not is_object_dtype(dt) and not is_datetime_or_timedelta_dtype(dt)):
# bottleneck does not properly upcast during the sum
# so can overflow
if name == 'nansum':
if dt.itemsize < 8:
return False
return True
return False
def _has_infs(result):
if isinstance(result, np.ndarray):
if result.dtype == 'f8':
return lib.has_infs_f8(result.ravel())
elif result.dtype == 'f4':
return lib.has_infs_f4(result.ravel())
try:
return np.isinf(result).any()
except (TypeError, NotImplementedError):
# if it doesn't support infs, then it can't have infs
return False
def _get_fill_value(dtype, fill_value=None, fill_value_typ=None):
""" return the correct fill value for the dtype of the values """
if fill_value is not None:
return fill_value
if _na_ok_dtype(dtype):
if fill_value_typ is None:
return np.nan
else:
if fill_value_typ == '+inf':
return np.inf
else:
return -np.inf
else:
if fill_value_typ is None:
return tslib.iNaT
else:
if fill_value_typ == '+inf':
# need the max int here
return _int64_max
else:
return tslib.iNaT
def _get_values(values, skipna, fill_value=None, fill_value_typ=None,
isfinite=False, copy=True):
""" utility to get the values view, mask, dtype
if necessary copy and mask using the specified fill_value
copy = True will force the copy
"""
values = _values_from_object(values)
if isfinite:
mask = _isfinite(values)
else:
mask = isnull(values)
dtype = values.dtype
dtype_ok = _na_ok_dtype(dtype)
# get our fill value (in case we need to provide an alternative
# dtype for it)
fill_value = _get_fill_value(dtype, fill_value=fill_value,
fill_value_typ=fill_value_typ)
if skipna:
if copy:
values = values.copy()
if dtype_ok:
np.putmask(values, mask, fill_value)
# promote if needed
else:
values, changed = _maybe_upcast_putmask(values, mask, fill_value)
elif copy:
values = values.copy()
values = _view_if_needed(values)
# return a platform independent precision dtype
dtype_max = dtype
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
dtype_max = np.int64
elif is_float_dtype(dtype):
dtype_max = np.float64
return values, mask, dtype, dtype_max
def _isfinite(values):
if is_datetime_or_timedelta_dtype(values):
return isnull(values)
if (is_complex_dtype(values) or is_float_dtype(values) or
is_integer_dtype(values) or is_bool_dtype(values)):
return ~np.isfinite(values)
return ~np.isfinite(values.astype('float64'))
def _na_ok_dtype(dtype):
return not is_int_or_datetime_dtype(dtype)
def _view_if_needed(values):
if is_datetime_or_timedelta_dtype(values):
return values.view(np.int64)
return values
def _wrap_results(result, dtype):
""" wrap our results if needed """
if is_datetime64_dtype(dtype):
if not isinstance(result, np.ndarray):
result = lib.Timestamp(result)
else:
result = result.view(dtype)
elif is_timedelta64_dtype(dtype):
if not isinstance(result, np.ndarray):
# raise if we have a timedelta64[ns] which is too large
if np.fabs(result) > _int64_max:
raise ValueError("overflow in timedelta operation")
result = lib.Timedelta(result, unit='ns')
else:
result = result.astype('i8').view(dtype)
return result
def nanany(values, axis=None, skipna=True):
values, mask, dtype, _ = _get_values(values, skipna, False, copy=skipna)
return values.any(axis)
def nanall(values, axis=None, skipna=True):
values, mask, dtype, _ = _get_values(values, skipna, True, copy=skipna)
return values.all(axis)
@disallow('M8')
@bottleneck_switch(zero_value=0)
def nansum(values, axis=None, skipna=True):
values, mask, dtype, dtype_max = _get_values(values, skipna, 0)
dtype_sum = dtype_max
if is_float_dtype(dtype):
dtype_sum = dtype
elif is_timedelta64_dtype(dtype):
dtype_sum = np.float64
the_sum = values.sum(axis, dtype=dtype_sum)
the_sum = _maybe_null_out(the_sum, axis, mask)
return _wrap_results(the_sum, dtype)
@disallow('M8')
@bottleneck_switch()
def nanmean(values, axis=None, skipna=True):
values, mask, dtype, dtype_max = _get_values(values, skipna, 0)
dtype_sum = dtype_max
dtype_count = np.float64
if is_integer_dtype(dtype) or is_timedelta64_dtype(dtype):
dtype_sum = np.float64
elif is_float_dtype(dtype):
dtype_sum = dtype
dtype_count = dtype
count = _get_counts(mask, axis, dtype=dtype_count)
the_sum = _ensure_numeric(values.sum(axis, dtype=dtype_sum))
if axis is not None and getattr(the_sum, 'ndim', False):
the_mean = the_sum / count
ct_mask = count == 0
if ct_mask.any():
the_mean[ct_mask] = np.nan
else:
the_mean = the_sum / count if count > 0 else np.nan
return _wrap_results(the_mean, dtype)
@disallow('M8')
@bottleneck_switch()
def nanmedian(values, axis=None, skipna=True):
values, mask, dtype, dtype_max = _get_values(values, skipna)
def get_median(x):
mask = notnull(x)
if not skipna and not mask.all():
return np.nan
return algos.median(_values_from_object(x[mask]))
if not is_float_dtype(values):
values = values.astype('f8')
values[mask] = np.nan
if axis is None:
values = values.ravel()
notempty = values.size
# an array from a frame
if values.ndim > 1:
# there's a non-empty array to apply over otherwise numpy raises
if notempty:
return _wrap_results(
np.apply_along_axis(get_median, axis, values), dtype)
# must return the correct shape, but median is not defined for the
# empty set so return nans of shape "everything but the passed axis"
# since "axis" is where the reduction would occur if we had a nonempty
# array
shp = np.array(values.shape)
dims = np.arange(values.ndim)
ret = np.empty(shp[dims != axis])
ret.fill(np.nan)
return _wrap_results(ret, dtype)
# otherwise return a scalar value
return _wrap_results(get_median(values) if notempty else np.nan, dtype)
def _get_counts_nanvar(mask, axis, ddof, dtype=float):
dtype = _get_dtype(dtype)
count = _get_counts(mask, axis, dtype=dtype)
d = count - dtype.type(ddof)
# always return NaN, never inf
if lib.isscalar(count):
if count <= ddof:
count = np.nan
d = np.nan
else:
mask2 = count <= ddof
if mask2.any():
np.putmask(d, mask2, np.nan)
np.putmask(count, mask2, np.nan)
return count, d
@disallow('M8')
@bottleneck_switch(ddof=1)
def nanstd(values, axis=None, skipna=True, ddof=1):
result = np.sqrt(nanvar(values, axis=axis, skipna=skipna, ddof=ddof))
return _wrap_results(result, values.dtype)
@disallow('M8')
@bottleneck_switch(ddof=1)
def nanvar(values, axis=None, skipna=True, ddof=1):
dtype = values.dtype
mask = isnull(values)
if is_any_int_dtype(values):
values = values.astype('f8')
values[mask] = np.nan
if is_float_dtype(values):
count, d = _get_counts_nanvar(mask, axis, ddof, values.dtype)
else:
count, d = _get_counts_nanvar(mask, axis, ddof)
if skipna:
values = values.copy()
np.putmask(values, mask, 0)
# xref GH10242
# Compute variance via two-pass algorithm, which is stable against
# cancellation errors and relatively accurate for small numbers of
# observations.
#
# See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
avg = _ensure_numeric(values.sum(axis=axis, dtype=np.float64)) / count
if axis is not None:
avg = np.expand_dims(avg, axis)
sqr = _ensure_numeric((avg - values)**2)
np.putmask(sqr, mask, 0)
result = sqr.sum(axis=axis, dtype=np.float64) / d
# Return variance as np.float64 (the datatype used in the accumulator),
# unless we were dealing with a float array, in which case use the same
# precision as the original values array.
if is_float_dtype(dtype):
result = result.astype(dtype)
return _wrap_results(result, values.dtype)
@disallow('M8', 'm8')
def nansem(values, axis=None, skipna=True, ddof=1):
var = nanvar(values, axis, skipna, ddof=ddof)
mask = isnull(values)
if not is_float_dtype(values.dtype):
values = values.astype('f8')
count, _ = _get_counts_nanvar(mask, axis, ddof, values.dtype)
var = nanvar(values, axis, skipna, ddof=ddof)
return np.sqrt(var) / np.sqrt(count)
def _nanminmax(meth, fill_value_typ):
@bottleneck_switch()
def reduction(values, axis=None, skipna=True):
values, mask, dtype, dtype_max = _get_values(
values, skipna, fill_value_typ=fill_value_typ, )
if ((axis is not None and values.shape[axis] == 0) or
values.size == 0):
try:
result = getattr(values, meth)(axis, dtype=dtype_max)
result.fill(np.nan)
except:
result = np.nan
else:
result = getattr(values, meth)(axis)
result = _wrap_results(result, dtype)
return _maybe_null_out(result, axis, mask)
reduction.__name__ = 'nan' + meth
return reduction
nanmin = _nanminmax('min', fill_value_typ='+inf')
nanmax = _nanminmax('max', fill_value_typ='-inf')
def nanargmax(values, axis=None, skipna=True):
"""
Returns -1 in the NA case
"""
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf')
result = values.argmax(axis)
result = _maybe_arg_null_out(result, axis, mask, skipna)
return result
def nanargmin(values, axis=None, skipna=True):
"""
Returns -1 in the NA case
"""
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='+inf')
result = values.argmin(axis)
result = _maybe_arg_null_out(result, axis, mask, skipna)
return result
@disallow('M8', 'm8')
def nanskew(values, axis=None, skipna=True):
""" Compute the sample skewness.
The statistic computed here is the adjusted Fisher-Pearson standardized
moment coefficient G1. The algorithm computes this coefficient directly
from the second and third central moment.
"""
mask = isnull(values)
if not is_float_dtype(values.dtype):
values = values.astype('f8')
count = _get_counts(mask, axis)
else:
count = _get_counts(mask, axis, dtype=values.dtype)
if skipna:
values = values.copy()
np.putmask(values, mask, 0)
mean = values.sum(axis, dtype=np.float64) / count
if axis is not None:
mean = np.expand_dims(mean, axis)
adjusted = values - mean
if skipna:
np.putmask(adjusted, mask, 0)
adjusted2 = adjusted ** 2
adjusted3 = adjusted2 * adjusted
m2 = adjusted2.sum(axis, dtype=np.float64)
m3 = adjusted3.sum(axis, dtype=np.float64)
# floating point error
m2 = _zero_out_fperr(m2)
m3 = _zero_out_fperr(m3)
result = (count * (count - 1) ** 0.5 / (count - 2)) * (m3 / m2 ** 1.5)
dtype = values.dtype
if is_float_dtype(dtype):
result = result.astype(dtype)
if isinstance(result, np.ndarray):
result = np.where(m2 == 0, 0, result)
result[count < 3] = np.nan
return result
else:
result = 0 if m2 == 0 else result
if count < 3:
return np.nan
return result
@disallow('M8', 'm8')
def nankurt(values, axis=None, skipna=True):
""" Compute the sample skewness.
The statistic computed here is the adjusted Fisher-Pearson standardized
moment coefficient G2, computed directly from the second and fourth
central moment.
"""
mask = isnull(values)
if not is_float_dtype(values.dtype):
values = values.astype('f8')
count = _get_counts(mask, axis)
else:
count = _get_counts(mask, axis, dtype=values.dtype)
if skipna:
values = values.copy()
np.putmask(values, mask, 0)
mean = values.sum(axis, dtype=np.float64) / count
if axis is not None:
mean = np.expand_dims(mean, axis)
adjusted = values - mean
if skipna:
np.putmask(adjusted, mask, 0)
adjusted2 = adjusted ** 2
adjusted4 = adjusted2 ** 2
m2 = adjusted2.sum(axis, dtype=np.float64)
m4 = adjusted4.sum(axis, dtype=np.float64)
adj = 3 * (count - 1) ** 2 / ((count - 2) * (count - 3))
numer = count * (count + 1) * (count - 1) * m4
denom = (count - 2) * (count - 3) * m2**2
result = numer / denom - adj
# floating point error
numer = _zero_out_fperr(numer)
denom = _zero_out_fperr(denom)
if not isinstance(denom, np.ndarray):
# if ``denom`` is a scalar, check these corner cases first before
# doing division
if count < 4:
return np.nan
if denom == 0:
return 0
result = numer / denom - adj
dtype = values.dtype
if is_float_dtype(dtype):
result = result.astype(dtype)
if isinstance(result, np.ndarray):
result = np.where(denom == 0, 0, result)
result[count < 4] = np.nan
return result
@disallow('M8', 'm8')
def nanprod(values, axis=None, skipna=True):
mask = isnull(values)
if skipna and not is_any_int_dtype(values):
values = values.copy()
values[mask] = 1
result = values.prod(axis)
return _maybe_null_out(result, axis, mask)
def _maybe_arg_null_out(result, axis, mask, skipna):
# helper function for nanargmin/nanargmax
if axis is None or not getattr(result, 'ndim', False):
if skipna:
if mask.all():
result = -1
else:
if mask.any():
result = -1
else:
if skipna:
na_mask = mask.all(axis)
else:
na_mask = mask.any(axis)
if na_mask.any():
result[na_mask] = -1
return result
def _get_counts(mask, axis, dtype=float):
dtype = _get_dtype(dtype)
if axis is None:
return dtype.type(mask.size - mask.sum())
count = mask.shape[axis] - mask.sum(axis)
if lib.isscalar(count):
return dtype.type(count)
try:
return count.astype(dtype)
except AttributeError:
return np.array(count, dtype=dtype)
def _maybe_null_out(result, axis, mask):
if axis is not None and getattr(result, 'ndim', False):
null_mask = (mask.shape[axis] - mask.sum(axis)) == 0
if np.any(null_mask):
if np.iscomplexobj(result):
result = result.astype('c16')
else:
result = result.astype('f8')
result[null_mask] = np.nan
elif result is not tslib.NaT:
null_mask = mask.size - mask.sum()
if null_mask == 0:
result = np.nan
return result
def _zero_out_fperr(arg):
if isinstance(arg, np.ndarray):
return np.where(np.abs(arg) < 1e-14, 0, arg)
else:
return arg.dtype.type(0) if np.abs(arg) < 1e-14 else arg
@disallow('M8', 'm8')
def nancorr(a, b, method='pearson', min_periods=None):
"""
a, b: ndarrays
"""
if len(a) != len(b):
raise AssertionError('Operands to nancorr must have same size')
if min_periods is None:
min_periods = 1
valid = notnull(a) & notnull(b)
if not valid.all():
a = a[valid]
b = b[valid]
if len(a) < min_periods:
return np.nan
f = get_corr_func(method)
return f(a, b)
def get_corr_func(method):
if method in ['kendall', 'spearman']:
from scipy.stats import kendalltau, spearmanr
def _pearson(a, b):
return np.corrcoef(a, b)[0, 1]
def _kendall(a, b):
rs = kendalltau(a, b)
if isinstance(rs, tuple):
return rs[0]
return rs
def _spearman(a, b):
return spearmanr(a, b)[0]
_cor_methods = {
'pearson': _pearson,
'kendall': _kendall,
'spearman': _spearman
}
return _cor_methods[method]
@disallow('M8', 'm8')
def nancov(a, b, min_periods=None):
if len(a) != len(b):
raise AssertionError('Operands to nancov must have same size')
if min_periods is None:
min_periods = 1
valid = notnull(a) & notnull(b)
if not valid.all():
a = a[valid]
b = b[valid]
if len(a) < min_periods:
return np.nan
return np.cov(a, b)[0, 1]
def _ensure_numeric(x):
if isinstance(x, np.ndarray):
if is_integer_dtype(x) or is_bool_dtype(x):
x = x.astype(np.float64)
elif is_object_dtype(x):
try:
x = x.astype(np.complex128)
except:
x = x.astype(np.float64)
else:
if not np.any(x.imag):
x = x.real
elif not (is_float(x) or is_integer(x) or is_complex(x)):
try:
x = float(x)
except Exception:
try:
x = complex(x)
except Exception:
raise TypeError('Could not convert %s to numeric' % str(x))
return x
# NA-friendly array comparisons
def make_nancomp(op):
def f(x, y):
xmask = isnull(x)
ymask = isnull(y)
mask = xmask | ymask
result = op(x, y)
if mask.any():
if is_bool_dtype(result):
result = result.astype('O')
np.putmask(result, mask, np.nan)
return result
return f
nangt = make_nancomp(operator.gt)
nange = make_nancomp(operator.ge)
nanlt = make_nancomp(operator.lt)
nanle = make_nancomp(operator.le)
naneq = make_nancomp(operator.eq)
nanne = make_nancomp(operator.ne)
def unique1d(values):
"""
Hash table-based unique
"""
if np.issubdtype(values.dtype, np.floating):
table = _hash.Float64HashTable(len(values))
uniques = np.array(table.unique(_ensure_float64(values)),
dtype=np.float64)
elif np.issubdtype(values.dtype, np.datetime64):
table = _hash.Int64HashTable(len(values))
uniques = table.unique(_ensure_int64(values))
uniques = uniques.view('M8[ns]')
elif np.issubdtype(values.dtype, np.timedelta64):
table = _hash.Int64HashTable(len(values))
uniques = table.unique(_ensure_int64(values))
uniques = uniques.view('m8[ns]')
elif np.issubdtype(values.dtype, np.integer):
table = _hash.Int64HashTable(len(values))
uniques = table.unique(_ensure_int64(values))
else:
table = _hash.PyObjectHashTable(len(values))
uniques = table.unique(_ensure_object(values))
return uniques