forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_to_csv.py
689 lines (589 loc) · 24.2 KB
/
test_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import io
import os
from pathlib import Path
import sys
from zipfile import ZipFile
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
compat,
)
import pandas._testing as tm
class TestToCSV:
def test_to_csv_with_single_column(self):
# see gh-18676, https://bugs.python.org/issue32255
#
# Python's CSV library adds an extraneous '""'
# before the newline when the NaN-value is in
# the first row. Otherwise, only the newline
# character is added. This behavior is inconsistent
# and was patched in https://bugs.python.org/pull_request4672.
df1 = DataFrame([None, 1])
expected1 = """\
""
1.0
"""
with tm.ensure_clean("test.csv") as path:
df1.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected1
df2 = DataFrame([1, None])
expected2 = """\
1.0
""
"""
with tm.ensure_clean("test.csv") as path:
df2.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected2
def test_to_csv_defualt_encoding(self):
# GH17097
df = DataFrame({"col": ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]})
with tm.ensure_clean("test.csv") as path:
# the default to_csv encoding is uft-8.
df.to_csv(path)
tm.assert_frame_equal(pd.read_csv(path, index_col=0), df)
def test_to_csv_quotechar(self):
df = DataFrame({"col": [1, 2]})
expected = """\
"","col"
"0","1"
"1","2"
"""
with tm.ensure_clean("test.csv") as path:
df.to_csv(path, quoting=1) # 1=QUOTE_ALL
with open(path) as f:
assert f.read() == expected
expected = """\
$$,$col$
$0$,$1$
$1$,$2$
"""
with tm.ensure_clean("test.csv") as path:
df.to_csv(path, quoting=1, quotechar="$")
with open(path) as f:
assert f.read() == expected
with tm.ensure_clean("test.csv") as path:
with pytest.raises(TypeError, match="quotechar"):
df.to_csv(path, quoting=1, quotechar=None)
def test_to_csv_doublequote(self):
df = DataFrame({"col": ['a"a', '"bb"']})
expected = '''\
"","col"
"0","a""a"
"1","""bb"""
'''
with tm.ensure_clean("test.csv") as path:
df.to_csv(path, quoting=1, doublequote=True) # QUOTE_ALL
with open(path) as f:
assert f.read() == expected
from _csv import Error
with tm.ensure_clean("test.csv") as path:
with pytest.raises(Error, match="escapechar"):
df.to_csv(path, doublequote=False) # no escapechar set
def test_to_csv_escapechar(self):
df = DataFrame({"col": ['a"a', '"bb"']})
expected = """\
"","col"
"0","a\\"a"
"1","\\"bb\\""
"""
with tm.ensure_clean("test.csv") as path: # QUOTE_ALL
df.to_csv(path, quoting=1, doublequote=False, escapechar="\\")
with open(path) as f:
assert f.read() == expected
df = DataFrame({"col": ["a,a", ",bb,"]})
expected = """\
,col
0,a\\,a
1,\\,bb\\,
"""
with tm.ensure_clean("test.csv") as path:
df.to_csv(path, quoting=3, escapechar="\\") # QUOTE_NONE
with open(path) as f:
assert f.read() == expected
def test_csv_to_string(self):
df = DataFrame({"col": [1, 2]})
expected_rows = [",col", "0,1", "1,2"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv() == expected
def test_to_csv_decimal(self):
# see gh-781
df = DataFrame({"col1": [1], "col2": ["a"], "col3": [10.1]})
expected_rows = [",col1,col2,col3", "0,1,a,10.1"]
expected_default = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv() == expected_default
expected_rows = [";col1;col2;col3", "0;1;a;10,1"]
expected_european_excel = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv(decimal=",", sep=";") == expected_european_excel
expected_rows = [",col1,col2,col3", "0,1,a,10.10"]
expected_float_format_default = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv(float_format="%.2f") == expected_float_format_default
expected_rows = [";col1;col2;col3", "0;1;a;10,10"]
expected_float_format = tm.convert_rows_list_to_csv_str(expected_rows)
assert (
df.to_csv(decimal=",", sep=";", float_format="%.2f")
== expected_float_format
)
# see gh-11553: testing if decimal is taken into account for '0.0'
df = DataFrame({"a": [0, 1.1], "b": [2.2, 3.3], "c": 1})
expected_rows = ["a,b,c", "0^0,2^2,1", "1^1,3^3,1"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv(index=False, decimal="^") == expected
# same but for an index
assert df.set_index("a").to_csv(decimal="^") == expected
# same for a multi-index
assert df.set_index(["a", "b"]).to_csv(decimal="^") == expected
def test_to_csv_float_format(self):
# testing if float_format is taken into account for the index
# GH 11553
df = DataFrame({"a": [0, 1], "b": [2.2, 3.3], "c": 1})
expected_rows = ["a,b,c", "0,2.20,1", "1,3.30,1"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.set_index("a").to_csv(float_format="%.2f") == expected
# same for a multi-index
assert df.set_index(["a", "b"]).to_csv(float_format="%.2f") == expected
def test_to_csv_na_rep(self):
# see gh-11553
#
# Testing if NaN values are correctly represented in the index.
df = DataFrame({"a": [0, np.NaN], "b": [0, 1], "c": [2, 3]})
expected_rows = ["a,b,c", "0.0,0,2", "_,1,3"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.set_index("a").to_csv(na_rep="_") == expected
assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
# now with an index containing only NaNs
df = DataFrame({"a": np.NaN, "b": [0, 1], "c": [2, 3]})
expected_rows = ["a,b,c", "_,0,2", "_,1,3"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.set_index("a").to_csv(na_rep="_") == expected
assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
# check if na_rep parameter does not break anything when no NaN
df = DataFrame({"a": 0, "b": [0, 1], "c": [2, 3]})
expected_rows = ["a,b,c", "0,0,2", "0,1,3"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.set_index("a").to_csv(na_rep="_") == expected
assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected
csv = pd.Series(["a", pd.NA, "c"]).to_csv(na_rep="ZZZZZ")
expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"])
assert expected == csv
def test_to_csv_na_rep_nullable_string(self, nullable_string_dtype):
# GH 29975
# Make sure full na_rep shows up when a dtype is provided
expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"])
csv = pd.Series(["a", pd.NA, "c"], dtype=nullable_string_dtype).to_csv(
na_rep="ZZZZZ"
)
assert expected == csv
def test_to_csv_date_format(self):
# GH 10209
df_sec = DataFrame({"A": pd.date_range("20130101", periods=5, freq="s")})
df_day = DataFrame({"A": pd.date_range("20130101", periods=5, freq="d")})
expected_rows = [
",A",
"0,2013-01-01 00:00:00",
"1,2013-01-01 00:00:01",
"2,2013-01-01 00:00:02",
"3,2013-01-01 00:00:03",
"4,2013-01-01 00:00:04",
]
expected_default_sec = tm.convert_rows_list_to_csv_str(expected_rows)
assert df_sec.to_csv() == expected_default_sec
expected_rows = [
",A",
"0,2013-01-01 00:00:00",
"1,2013-01-02 00:00:00",
"2,2013-01-03 00:00:00",
"3,2013-01-04 00:00:00",
"4,2013-01-05 00:00:00",
]
expected_ymdhms_day = tm.convert_rows_list_to_csv_str(expected_rows)
assert df_day.to_csv(date_format="%Y-%m-%d %H:%M:%S") == expected_ymdhms_day
expected_rows = [
",A",
"0,2013-01-01",
"1,2013-01-01",
"2,2013-01-01",
"3,2013-01-01",
"4,2013-01-01",
]
expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows)
assert df_sec.to_csv(date_format="%Y-%m-%d") == expected_ymd_sec
expected_rows = [
",A",
"0,2013-01-01",
"1,2013-01-02",
"2,2013-01-03",
"3,2013-01-04",
"4,2013-01-05",
]
expected_default_day = tm.convert_rows_list_to_csv_str(expected_rows)
assert df_day.to_csv() == expected_default_day
assert df_day.to_csv(date_format="%Y-%m-%d") == expected_default_day
# see gh-7791
#
# Testing if date_format parameter is taken into account
# for multi-indexed DataFrames.
df_sec["B"] = 0
df_sec["C"] = 1
expected_rows = ["A,B,C", "2013-01-01,0,1.0"]
expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows)
df_sec_grouped = df_sec.groupby([pd.Grouper(key="A", freq="1h"), "B"])
assert df_sec_grouped.mean().to_csv(date_format="%Y-%m-%d") == expected_ymd_sec
def test_to_csv_multi_index(self):
# see gh-6618
df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]]))
exp_rows = [",1", ",2", "0,1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv() == exp
exp_rows = ["1", "2", "1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv(index=False) == exp
df = DataFrame(
[1],
columns=pd.MultiIndex.from_arrays([[1], [2]]),
index=pd.MultiIndex.from_arrays([[1], [2]]),
)
exp_rows = [",,1", ",,2", "1,2,1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv() == exp
exp_rows = ["1", "2", "1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv(index=False) == exp
df = DataFrame([1], columns=pd.MultiIndex.from_arrays([["foo"], ["bar"]]))
exp_rows = [",foo", ",bar", "0,1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv() == exp
exp_rows = ["foo", "bar", "1"]
exp = tm.convert_rows_list_to_csv_str(exp_rows)
assert df.to_csv(index=False) == exp
@pytest.mark.parametrize(
"ind,expected",
[
(
pd.MultiIndex(levels=[[1.0]], codes=[[0]], names=["x"]),
"x,data\n1.0,1\n",
),
(
pd.MultiIndex(
levels=[[1.0], [2.0]], codes=[[0], [0]], names=["x", "y"]
),
"x,y,data\n1.0,2.0,1\n",
),
],
)
@pytest.mark.parametrize("klass", [DataFrame, pd.Series])
def test_to_csv_single_level_multi_index(self, ind, expected, klass):
# see gh-19589
result = klass(pd.Series([1], ind, name="data")).to_csv(
line_terminator="\n", header=True
)
assert result == expected
def test_to_csv_string_array_ascii(self):
# GH 10813
str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}]
df = DataFrame(str_array)
expected_ascii = """\
,names
0,"['foo', 'bar']"
1,"['baz', 'qux']"
"""
with tm.ensure_clean("str_test.csv") as path:
df.to_csv(path, encoding="ascii")
with open(path) as f:
assert f.read() == expected_ascii
def test_to_csv_string_array_utf8(self):
# GH 10813
str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}]
df = DataFrame(str_array)
expected_utf8 = """\
,names
0,"['foo', 'bar']"
1,"['baz', 'qux']"
"""
with tm.ensure_clean("unicode_test.csv") as path:
df.to_csv(path, encoding="utf-8")
with open(path) as f:
assert f.read() == expected_utf8
def test_to_csv_string_with_lf(self):
# GH 20353
data = {"int": [1, 2, 3], "str_lf": ["abc", "d\nef", "g\nh\n\ni"]}
df = DataFrame(data)
with tm.ensure_clean("lf_test.csv") as path:
# case 1: The default line terminator(=os.linesep)(PR 21406)
os_linesep = os.linesep.encode("utf-8")
expected_noarg = (
b"int,str_lf"
+ os_linesep
+ b"1,abc"
+ os_linesep
+ b'2,"d\nef"'
+ os_linesep
+ b'3,"g\nh\n\ni"'
+ os_linesep
)
df.to_csv(path, index=False)
with open(path, "rb") as f:
assert f.read() == expected_noarg
with tm.ensure_clean("lf_test.csv") as path:
# case 2: LF as line terminator
expected_lf = b'int,str_lf\n1,abc\n2,"d\nef"\n3,"g\nh\n\ni"\n'
df.to_csv(path, line_terminator="\n", index=False)
with open(path, "rb") as f:
assert f.read() == expected_lf
with tm.ensure_clean("lf_test.csv") as path:
# case 3: CRLF as line terminator
# 'line_terminator' should not change inner element
expected_crlf = b'int,str_lf\r\n1,abc\r\n2,"d\nef"\r\n3,"g\nh\n\ni"\r\n'
df.to_csv(path, line_terminator="\r\n", index=False)
with open(path, "rb") as f:
assert f.read() == expected_crlf
def test_to_csv_string_with_crlf(self):
# GH 20353
data = {"int": [1, 2, 3], "str_crlf": ["abc", "d\r\nef", "g\r\nh\r\n\r\ni"]}
df = DataFrame(data)
with tm.ensure_clean("crlf_test.csv") as path:
# case 1: The default line terminator(=os.linesep)(PR 21406)
os_linesep = os.linesep.encode("utf-8")
expected_noarg = (
b"int,str_crlf"
+ os_linesep
+ b"1,abc"
+ os_linesep
+ b'2,"d\r\nef"'
+ os_linesep
+ b'3,"g\r\nh\r\n\r\ni"'
+ os_linesep
)
df.to_csv(path, index=False)
with open(path, "rb") as f:
assert f.read() == expected_noarg
with tm.ensure_clean("crlf_test.csv") as path:
# case 2: LF as line terminator
expected_lf = b'int,str_crlf\n1,abc\n2,"d\r\nef"\n3,"g\r\nh\r\n\r\ni"\n'
df.to_csv(path, line_terminator="\n", index=False)
with open(path, "rb") as f:
assert f.read() == expected_lf
with tm.ensure_clean("crlf_test.csv") as path:
# case 3: CRLF as line terminator
# 'line_terminator' should not change inner element
expected_crlf = (
b"int,str_crlf\r\n"
b"1,abc\r\n"
b'2,"d\r\nef"\r\n'
b'3,"g\r\nh\r\n\r\ni"\r\n'
)
df.to_csv(path, line_terminator="\r\n", index=False)
with open(path, "rb") as f:
assert f.read() == expected_crlf
def test_to_csv_stdout_file(self, capsys):
# GH 21561
df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["name_1", "name_2"])
expected_rows = [",name_1,name_2", "0,foo,bar", "1,baz,qux"]
expected_ascii = tm.convert_rows_list_to_csv_str(expected_rows)
df.to_csv(sys.stdout, encoding="ascii")
captured = capsys.readouterr()
assert captured.out == expected_ascii
assert not sys.stdout.closed
@pytest.mark.xfail(
compat.is_platform_windows(),
reason=(
"Especially in Windows, file stream should not be passed"
"to csv writer without newline='' option."
"(https://docs.python.org/3.6/library/csv.html#csv.writer)"
),
)
def test_to_csv_write_to_open_file(self):
# GH 21696
df = DataFrame({"a": ["x", "y", "z"]})
expected = """\
manual header
x
y
z
"""
with tm.ensure_clean("test.txt") as path:
with open(path, "w") as f:
f.write("manual header\n")
df.to_csv(f, header=None, index=None)
with open(path) as f:
assert f.read() == expected
def test_to_csv_write_to_open_file_with_newline_py3(self):
# see gh-21696
# see gh-20353
df = DataFrame({"a": ["x", "y", "z"]})
expected_rows = ["x", "y", "z"]
expected = "manual header\n" + tm.convert_rows_list_to_csv_str(expected_rows)
with tm.ensure_clean("test.txt") as path:
with open(path, "w", newline="") as f:
f.write("manual header\n")
df.to_csv(f, header=None, index=None)
with open(path, "rb") as f:
assert f.read() == bytes(expected, "utf-8")
@pytest.mark.parametrize("to_infer", [True, False])
@pytest.mark.parametrize("read_infer", [True, False])
def test_to_csv_compression(self, compression_only, read_infer, to_infer):
# see gh-15008
compression = compression_only
if compression == "zip":
pytest.skip(f"{compression} is not supported for to_csv")
# We'll complete file extension subsequently.
filename = "test."
if compression == "gzip":
filename += "gz"
else:
# xz --> .xz
# bz2 --> .bz2
filename += compression
df = DataFrame({"A": [1]})
to_compression = "infer" if to_infer else compression
read_compression = "infer" if read_infer else compression
with tm.ensure_clean(filename) as path:
df.to_csv(path, compression=to_compression)
result = pd.read_csv(path, index_col=0, compression=read_compression)
tm.assert_frame_equal(result, df)
def test_to_csv_compression_dict(self, compression_only):
# GH 26023
method = compression_only
df = DataFrame({"ABC": [1]})
filename = "to_csv_compress_as_dict."
filename += "gz" if method == "gzip" else method
with tm.ensure_clean(filename) as path:
df.to_csv(path, compression={"method": method})
read_df = pd.read_csv(path, index_col=0)
tm.assert_frame_equal(read_df, df)
def test_to_csv_compression_dict_no_method_raises(self):
# GH 26023
df = DataFrame({"ABC": [1]})
compression = {"some_option": True}
msg = "must have key 'method'"
with tm.ensure_clean("out.zip") as path:
with pytest.raises(ValueError, match=msg):
df.to_csv(path, compression=compression)
@pytest.mark.parametrize("compression", ["zip", "infer"])
@pytest.mark.parametrize("archive_name", ["test_to_csv.csv", "test_to_csv.zip"])
def test_to_csv_zip_arguments(self, compression, archive_name):
# GH 26023
df = DataFrame({"ABC": [1]})
with tm.ensure_clean("to_csv_archive_name.zip") as path:
df.to_csv(
path, compression={"method": compression, "archive_name": archive_name}
)
with ZipFile(path) as zp:
assert len(zp.filelist) == 1
archived_file = zp.filelist[0].filename
assert archived_file == archive_name
@pytest.mark.parametrize(
"filename,expected_arcname",
[
("archive.csv", "archive.csv"),
("archive.tsv", "archive.tsv"),
("archive.csv.zip", "archive.csv"),
("archive.tsv.zip", "archive.tsv"),
("archive.zip", "archive"),
],
)
def test_to_csv_zip_infer_name(self, filename, expected_arcname):
# GH 39465
df = DataFrame({"ABC": [1]})
with tm.ensure_clean_dir() as dir:
path = Path(dir, filename)
df.to_csv(path, compression="zip")
with ZipFile(path) as zp:
assert len(zp.filelist) == 1
archived_file = zp.filelist[0].filename
assert archived_file == expected_arcname
@pytest.mark.parametrize("df_new_type", ["Int64"])
def test_to_csv_na_rep_long_string(self, df_new_type):
# see gh-25099
df = DataFrame({"c": [float("nan")] * 3})
df = df.astype(df_new_type)
expected_rows = ["c", "mynull", "mynull", "mynull"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(index=False, na_rep="mynull", encoding="ascii")
assert expected == result
def test_to_csv_timedelta_precision(self):
# GH 6783
s = pd.Series([1, 1]).astype("timedelta64[ns]")
buf = io.StringIO()
s.to_csv(buf)
result = buf.getvalue()
expected_rows = [
",0",
"0,0 days 00:00:00.000000001",
"1,0 days 00:00:00.000000001",
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_na_rep_truncated(self):
# https://github.com/pandas-dev/pandas/issues/31447
result = pd.Series(range(8, 12)).to_csv(na_rep="-")
expected = tm.convert_rows_list_to_csv_str([",0", "0,8", "1,9", "2,10", "3,11"])
assert result == expected
result = pd.Series([True, False]).to_csv(na_rep="nan")
expected = tm.convert_rows_list_to_csv_str([",0", "0,True", "1,False"])
assert result == expected
result = pd.Series([1.1, 2.2]).to_csv(na_rep=".")
expected = tm.convert_rows_list_to_csv_str([",0", "0,1.1", "1,2.2"])
assert result == expected
@pytest.mark.parametrize("errors", ["surrogatepass", "ignore", "replace"])
def test_to_csv_errors(self, errors):
# GH 22610
data = ["\ud800foo"]
ser = pd.Series(data, index=pd.Index(data))
with tm.ensure_clean("test.csv") as path:
ser.to_csv(path, errors=errors)
# No use in reading back the data as it is not the same anymore
# due to the error handling
@pytest.mark.parametrize("mode", ["wb", "w"])
def test_to_csv_binary_handle(self, mode):
"""
Binary file objects should work (if 'mode' contains a 'b') or even without
it in most cases.
GH 35058 and GH 19827
"""
df = tm.makeDataFrame()
with tm.ensure_clean() as path:
with open(path, mode="w+b") as handle:
df.to_csv(handle, mode=mode)
tm.assert_frame_equal(df, pd.read_csv(path, index_col=0))
@pytest.mark.parametrize("mode", ["wb", "w"])
def test_to_csv_encoding_binary_handle(self, mode):
"""
Binary file objects should honor a specified encoding.
GH 23854 and GH 13068 with binary handles
"""
# example from GH 23854
content = "a, b, 🐟".encode("utf-8-sig")
buffer = io.BytesIO(content)
df = pd.read_csv(buffer, encoding="utf-8-sig")
buffer = io.BytesIO()
df.to_csv(buffer, mode=mode, encoding="utf-8-sig", index=False)
buffer.seek(0) # tests whether file handle wasn't closed
assert buffer.getvalue().startswith(content)
# example from GH 13068
with tm.ensure_clean() as path:
with open(path, "w+b") as handle:
DataFrame().to_csv(handle, mode=mode, encoding="utf-8-sig")
handle.seek(0)
assert handle.read().startswith(b'\xef\xbb\xbf""')
def test_to_csv_iterative_compression_name(compression):
# GH 38714
df = tm.makeDataFrame()
with tm.ensure_clean() as path:
df.to_csv(path, compression=compression, chunksize=1)
tm.assert_frame_equal(
pd.read_csv(path, compression=compression, index_col=0), df
)
def test_to_csv_iterative_compression_buffer(compression):
# GH 38714
df = tm.makeDataFrame()
with io.BytesIO() as buffer:
df.to_csv(buffer, compression=compression, chunksize=1)
buffer.seek(0)
tm.assert_frame_equal(
pd.read_csv(buffer, compression=compression, index_col=0), df
)
assert not buffer.closed