Skip to content

Commit ef0cb6a

Browse files
committed
[WIP] DOC Fixes pandas-dev#8447 added examples
1 parent 17c1fad commit ef0cb6a

File tree

1 file changed

+96
-14
lines changed

1 file changed

+96
-14
lines changed

pandas/plotting/_core.py

+96-14
Original file line numberDiff line numberDiff line change
@@ -1980,52 +1980,134 @@ def plot_series(data, kind='line', ax=None, # Series unique
19801980

19811981

19821982
_shared_docs['boxplot'] = """
1983-
Make a box plot from DataFrame column optionally grouped by some columns or
1984-
other inputs
1983+
Make a box-and-whisker plot from DataFrame column optionally grouped
1984+
by some columns or other inputs. The box extends from the Q1 to Q3
1985+
quartile values of the data, with a line at the median (Q2).
1986+
The whiskers extend from the edges of box to show the range of the data.
1987+
Flier points (outliers) are those past the end of the whiskers.
1988+
The position of the whiskers is set by default to 1.5 IQR (`whis=1.5``)
1989+
from the edge of the box.
1990+
1991+
For further details see
1992+
Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot/>`_.
19851993
19861994
Parameters
19871995
----------
1988-
data : the pandas object holding the data
19891996
column : column name or list of names, or vector
1990-
Can be any valid input to groupby
1997+
Can be any valid input to groupby.
19911998
by : string or sequence
1992-
Column in the DataFrame to group by
1993-
ax : Matplotlib axes object, optional
1999+
Column in the DataFrame to groupby.
2000+
ax : Matplotlib axes object, (default `None`)
2001+
The matplotlib axes to be used by boxplot.
19942002
fontsize : int or string
2003+
The font-size used by matplotlib.
19952004
rot : label rotation angle
2005+
The rotation angle of labels.
2006+
grid : boolean( default `True`)
2007+
Setting this to True will show the grid.
19962008
figsize : A tuple (width, height) in inches
1997-
grid : Setting this to True will show the grid
2009+
The size of the figure to create in inches by default.
19982010
layout : tuple (optional)
1999-
(rows, columns) for the layout of the plot
2011+
Tuple (rows, columns) used for the layout of the plot.
20002012
return_type : {None, 'axes', 'dict', 'both'}, default None
20012013
The kind of object to return. The default is ``axes``
20022014
'axes' returns the matplotlib axes the boxplot is drawn on;
20032015
'dict' returns a dictionary whose values are the matplotlib
20042016
Lines of the boxplot;
20052017
'both' returns a namedtuple with the axes and dict.
2006-
20072018
When grouping with ``by``, a Series mapping columns to ``return_type``
20082019
is returned, unless ``return_type`` is None, in which case a NumPy
20092020
array of axes is returned with the same shape as ``layout``.
20102021
See the prose documentation for more.
2011-
2012-
`**kwds` : Keyword Arguments
2022+
kwds : Keyword Arguments (optional)
20132023
All other plotting keyword arguments to be passed to
2014-
matplotlib's boxplot function
2024+
matplotlib's function.
20152025
20162026
Returns
20172027
-------
20182028
lines : dict
20192029
ax : matplotlib Axes
2020-
(ax, lines): namedtuple
2030+
(ax, lines): namedtuple
2031+
2032+
See Also
2033+
--------
2034+
matplotlib.pyplot.boxplot: Make a box and whisker plot.
20212035
20222036
Notes
20232037
-----
20242038
Use ``return_type='dict'`` when you want to tweak the appearance
20252039
of the lines after plotting. In this case a dict containing the Lines
20262040
making up the boxes, caps, fliers, medians, and whiskers is returned.
2027-
"""
20282041
2042+
Examples
2043+
--------
2044+
.. plot::
2045+
:context: close-figs
2046+
2047+
>>> np.random.seed(1234)
2048+
2049+
>>> df = pd.DataFrame({
2050+
... u'stratifying_var': np.random.uniform(0, 100, 20),
2051+
... u'price': np.random.normal(100, 5, 20),
2052+
... u'demand': np.random.normal(100, 10, 20)})
2053+
2054+
>>> df[u'quartiles'] = pd.qcut(
2055+
... df[u'stratifying_var'], 4,
2056+
... labels=[u'0-25%%', u'25-50%%', u'50-75%%', u'75-100%%'])
2057+
2058+
>>> df
2059+
stratifying_var price demand quartiles
2060+
0 19.151945 106.605791 108.416747 0-25%%
2061+
1 62.210877 92.265472 123.909605 50-75%%
2062+
2 43.772774 98.986768 100.761996 25-50%%
2063+
3 78.535858 96.720153 94.335541 75-100%%
2064+
4 77.997581 100.967107 100.361419 50-75%%
2065+
5 27.259261 102.767195 79.250224 0-25%%
2066+
6 27.646426 106.590758 102.477922 0-25%%
2067+
7 80.187218 97.653474 91.028432 75-100%%
2068+
8 95.813935 103.377770 98.632052 75-100%%
2069+
9 87.593263 90.914864 100.182892 75-100%%
2070+
10 35.781727 99.084457 107.554140 0-25%%
2071+
11 50.099513 105.294846 102.152686 25-50%%
2072+
12 68.346294 98.010799 108.410088 50-75%%
2073+
13 71.270203 101.687188 85.541899 50-75%%
2074+
14 37.025075 105.237893 85.980267 25-50%%
2075+
15 56.119619 105.229691 98.990818 25-50%%
2076+
16 50.308317 104.318586 94.517576 25-50%%
2077+
17 1.376845 99.389542 98.553805 0-25%%
2078+
18 77.282662 100.623565 103.540203 50-75%%
2079+
19 88.264119 98.386026 99.644870 75-100%%
2080+
2081+
To plot the boxplot of the ``demand`` just put:
2082+
2083+
.. plot::
2084+
:context: close-figs
2085+
2086+
>>> boxplot = df.boxplot(column=u'demand', by=u'quartiles')
2087+
2088+
Use ``grid=False`` to hide the grid:
2089+
2090+
.. plot::
2091+
:context: close-figs
2092+
2093+
>>> boxplot = df.boxplot(column=u'demand', by=u'quartiles', grid=False)
2094+
2095+
Optionally, the layout can be changed by setting ``layout=(rows, cols)``:
2096+
2097+
.. plot::
2098+
:context: close-figs
2099+
2100+
>>> boxplot = df.boxplot(column=[u'price',u'demand'],
2101+
... by=u'quartiles', layout=(1,2),
2102+
... figsize=(8,5))
2103+
2104+
.. plot::
2105+
:context: close-figs
2106+
2107+
>>> boxplot = df.boxplot(column=[u'price',u'demand'],
2108+
... by=u'quartiles', layout=(2,1),
2109+
... figsize=(5,8))
2110+
"""
20292111

20302112
@Appender(_shared_docs['boxplot'] % _shared_doc_kwargs)
20312113
def boxplot(data, column=None, by=None, ax=None, fontsize=None,

0 commit comments

Comments
 (0)