Skip to content

Commit 592a193

Browse files
committed
Revert [SLP] Look-ahead operand reordering heuristic.
This reverts r364084 (git commit 5698921) It caused crashes while compiling a file in Chrome. Reduction forthcoming. llvm-svn: 364111
1 parent a9bfda0 commit 592a193

File tree

2 files changed

+93
-276
lines changed

2 files changed

+93
-276
lines changed

llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

Lines changed: 46 additions & 232 deletions
Original file line numberDiff line numberDiff line change
@@ -147,12 +147,6 @@ static cl::opt<unsigned> MinTreeSize(
147147
"slp-min-tree-size", cl::init(3), cl::Hidden,
148148
cl::desc("Only vectorize small trees if they are fully vectorizable"));
149149

150-
// The maximum depth that the look-ahead score heuristic will explore.
151-
// The higher this value, the higher the compilation time overhead.
152-
static cl::opt<int> LookAheadMaxDepth(
153-
"slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
154-
cl::desc("The maximum look-ahead depth for operand reordering scores"));
155-
156150
static cl::opt<bool>
157151
ViewSLPTree("view-slp-tree", cl::Hidden,
158152
cl::desc("Display the SLP trees with Graphviz"));
@@ -714,7 +708,6 @@ class BoUpSLP {
714708

715709
const DataLayout &DL;
716710
ScalarEvolution &SE;
717-
const BoUpSLP &R;
718711

719712
/// \returns the operand data at \p OpIdx and \p Lane.
720713
OperandData &getData(unsigned OpIdx, unsigned Lane) {
@@ -740,207 +733,6 @@ class BoUpSLP {
740733
std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
741734
}
742735

743-
// The hard-coded scores listed here are not very important. When computing
744-
// the scores of matching one sub-tree with another, we are basically
745-
// counting the number of values that are matching. So even if all scores
746-
// are set to 1, we would still get a decent matching result.
747-
// However, sometimes we have to break ties. For example we may have to
748-
// choose between matching loads vs matching opcodes. This is what these
749-
// scores are helping us with: they provide the order of preference.
750-
751-
/// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
752-
static const int ScoreConsecutiveLoads = 3;
753-
/// Constants.
754-
static const int ScoreConstants = 2;
755-
/// Instructions with the same opcode.
756-
static const int ScoreSameOpcode = 2;
757-
/// Instructions with alt opcodes (e.g, add + sub).
758-
static const int ScoreAltOpcodes = 1;
759-
/// Identical instructions (a.k.a. splat or broadcast).
760-
static const int ScoreSplat = 1;
761-
/// Matching with an undef is preferable to failing.
762-
static const int ScoreUndef = 1;
763-
/// Score for failing to find a decent match.
764-
static const int ScoreFail = 0;
765-
/// User external to the vectorized code.
766-
static const int ExternalUseCost = 1;
767-
/// The user is internal but in a different lane.
768-
static const int UserInDiffLaneCost = ExternalUseCost;
769-
770-
/// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
771-
static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
772-
ScalarEvolution &SE) {
773-
auto *LI1 = dyn_cast<LoadInst>(V1);
774-
auto *LI2 = dyn_cast<LoadInst>(V2);
775-
if (LI1 && LI2)
776-
return isConsecutiveAccess(LI1, LI2, DL, SE)
777-
? VLOperands::ScoreConsecutiveLoads
778-
: VLOperands::ScoreFail;
779-
780-
auto *C1 = dyn_cast<Constant>(V1);
781-
auto *C2 = dyn_cast<Constant>(V2);
782-
if (C1 && C2)
783-
return VLOperands::ScoreConstants;
784-
785-
auto *I1 = dyn_cast<Instruction>(V1);
786-
auto *I2 = dyn_cast<Instruction>(V2);
787-
if (I1 && I2) {
788-
if (I1 == I2)
789-
return VLOperands::ScoreSplat;
790-
InstructionsState S = getSameOpcode({I1, I2});
791-
// Note: Only consider instructions with <= 2 operands to avoid
792-
// complexity explosion.
793-
if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
794-
return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
795-
: VLOperands::ScoreSameOpcode;
796-
}
797-
798-
if (isa<UndefValue>(V2))
799-
return VLOperands::ScoreUndef;
800-
801-
return VLOperands::ScoreFail;
802-
}
803-
804-
/// Holds the values and their lane that are taking part in the look-ahead
805-
/// score calculation. This is used in the external uses cost calculation.
806-
SmallDenseMap<Value *, int> InLookAheadValues;
807-
808-
/// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
809-
/// either external to the vectorized code, or require shuffling.
810-
int getExternalUsesCost(const std::pair<Value *, int> &LHS,
811-
const std::pair<Value *, int> &RHS) {
812-
int Cost = 0;
813-
SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS};
814-
for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
815-
Value *V = Values[Idx].first;
816-
// Calculate the absolute lane, using the minimum relative lane of LHS
817-
// and RHS as base and Idx as the offset.
818-
int Ln = std::min(LHS.second, RHS.second) + Idx;
819-
assert(Ln >= 0 && "Bad lane calculation");
820-
for (User *U : V->users()) {
821-
if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
822-
// The user is in the VectorizableTree. Check if we need to insert.
823-
auto It = llvm::find(UserTE->Scalars, U);
824-
assert(It != UserTE->Scalars.end() && "U is in UserTE");
825-
int UserLn = std::distance(UserTE->Scalars.begin(), It);
826-
assert(UserLn >= 0 && "Bad lane");
827-
if (UserLn != Ln)
828-
Cost += UserInDiffLaneCost;
829-
} else {
830-
// Check if the user is in the look-ahead code.
831-
auto It2 = InLookAheadValues.find(U);
832-
if (It2 != InLookAheadValues.end()) {
833-
// The user is in the look-ahead code. Check the lane.
834-
if (It2->second != Ln)
835-
Cost += UserInDiffLaneCost;
836-
} else {
837-
// The user is neither in SLP tree nor in the look-ahead code.
838-
Cost += ExternalUseCost;
839-
}
840-
}
841-
}
842-
}
843-
return Cost;
844-
}
845-
846-
/// Go through the operands of \p LHS and \p RHS recursively until \p
847-
/// MaxLevel, and return the cummulative score. For example:
848-
/// \verbatim
849-
/// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
850-
/// \ / \ / \ / \ /
851-
/// + + + +
852-
/// G1 G2 G3 G4
853-
/// \endverbatim
854-
/// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
855-
/// each level recursively, accumulating the score. It starts from matching
856-
/// the additions at level 0, then moves on to the loads (level 1). The
857-
/// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
858-
/// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
859-
/// {A[0],C[0]} has a score of VLOperands::ScoreFail.
860-
/// Please note that the order of the operands does not matter, as we
861-
/// evaluate the score of all profitable combinations of operands. In
862-
/// other words the score of G1 and G4 is the same as G1 and G2. This
863-
/// heuristic is based on ideas described in:
864-
/// Look-ahead SLP: Auto-vectorization in the presence of commutative
865-
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
866-
/// Luís F. W. Góes
867-
int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
868-
const std::pair<Value *, int> &RHS, int CurrLevel,
869-
int MaxLevel) {
870-
871-
Value *V1 = LHS.first;
872-
Value *V2 = RHS.first;
873-
// Get the shallow score of V1 and V2.
874-
int ShallowScoreAtThisLevel =
875-
std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
876-
getExternalUsesCost(LHS, RHS));
877-
int Lane1 = LHS.second;
878-
int Lane2 = RHS.second;
879-
880-
// If reached MaxLevel,
881-
// or if V1 and V2 are not instructions,
882-
// or if they are SPLAT,
883-
// or if they are not consecutive, early return the current cost.
884-
auto *I1 = dyn_cast<Instruction>(V1);
885-
auto *I2 = dyn_cast<Instruction>(V2);
886-
if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
887-
ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
888-
(isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
889-
return ShallowScoreAtThisLevel;
890-
assert(I1 && I2 && "Should have early exited.");
891-
892-
// Keep track of in-tree values for determining the external-use cost.
893-
InLookAheadValues[V1] = Lane1;
894-
InLookAheadValues[V2] = Lane2;
895-
896-
// Contains the I2 operand indexes that got matched with I1 operands.
897-
SmallSet<int, 4> Op2Used;
898-
899-
// Recursion towards the operands of I1 and I2. We are trying all possbile
900-
// operand pairs, and keeping track of the best score.
901-
for (int OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
902-
OpIdx1 != NumOperands1; ++OpIdx1) {
903-
// Try to pair op1I with the best operand of I2.
904-
int MaxTmpScore = 0;
905-
int MaxOpIdx2 = -1;
906-
// If I2 is commutative try all combinations.
907-
int FromIdx = isCommutative(I2) ? 0 : OpIdx1;
908-
int ToIdx = isCommutative(I2) ? I2->getNumOperands() : OpIdx1 + 1;
909-
assert(FromIdx < ToIdx && "Bad index");
910-
for (int OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
911-
// Skip operands already paired with OpIdx1.
912-
if (Op2Used.count(OpIdx2))
913-
continue;
914-
// Recursively calculate the cost at each level
915-
int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
916-
{I2->getOperand(OpIdx2), Lane2},
917-
CurrLevel + 1, MaxLevel);
918-
// Look for the best score.
919-
if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
920-
MaxTmpScore = TmpScore;
921-
MaxOpIdx2 = OpIdx2;
922-
}
923-
}
924-
if (MaxOpIdx2 >= 0) {
925-
// Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
926-
Op2Used.insert(MaxOpIdx2);
927-
ShallowScoreAtThisLevel += MaxTmpScore;
928-
}
929-
}
930-
return ShallowScoreAtThisLevel;
931-
}
932-
933-
/// \Returns the look-ahead score, which tells us how much the sub-trees
934-
/// rooted at \p LHS and \p RHS match, the more they match the higher the
935-
/// score. This helps break ties in an informed way when we cannot decide on
936-
/// the order of the operands by just considering the immediate
937-
/// predecessors.
938-
int getLookAheadScore(const std::pair<Value *, int> &LHS,
939-
const std::pair<Value *, int> &RHS) {
940-
InLookAheadValues.clear();
941-
return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
942-
}
943-
944736
// Search all operands in Ops[*][Lane] for the one that matches best
945737
// Ops[OpIdx][LastLane] and return its opreand index.
946738
// If no good match can be found, return None.
@@ -958,6 +750,9 @@ class BoUpSLP {
958750
// The linearized opcode of the operand at OpIdx, Lane.
959751
bool OpIdxAPO = getData(OpIdx, Lane).APO;
960752

753+
const unsigned BestScore = 2;
754+
const unsigned GoodScore = 1;
755+
961756
// The best operand index and its score.
962757
// Sometimes we have more than one option (e.g., Opcode and Undefs), so we
963758
// are using the score to differentiate between the two.
@@ -986,19 +781,41 @@ class BoUpSLP {
986781
// Look for an operand that matches the current mode.
987782
switch (RMode) {
988783
case ReorderingMode::Load:
784+
if (isa<LoadInst>(Op)) {
785+
// Figure out which is left and right, so that we can check for
786+
// consecutive loads
787+
bool LeftToRight = Lane > LastLane;
788+
Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
789+
Value *OpRight = (LeftToRight) ? Op : OpLastLane;
790+
if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
791+
cast<LoadInst>(OpRight), DL, SE))
792+
BestOp.Idx = Idx;
793+
}
794+
break;
795+
case ReorderingMode::Opcode:
796+
// We accept both Instructions and Undefs, but with different scores.
797+
if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
798+
cast<Instruction>(Op)->getOpcode() ==
799+
cast<Instruction>(OpLastLane)->getOpcode()) ||
800+
(isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
801+
isa<UndefValue>(Op)) {
802+
// An instruction has a higher score than an undef.
803+
unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
804+
if (Score > BestOp.Score) {
805+
BestOp.Idx = Idx;
806+
BestOp.Score = Score;
807+
}
808+
}
809+
break;
989810
case ReorderingMode::Constant:
990-
case ReorderingMode::Opcode: {
991-
bool LeftToRight = Lane > LastLane;
992-
Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
993-
Value *OpRight = (LeftToRight) ? Op : OpLastLane;
994-
unsigned Score =
995-
getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
996-
if (Score > BestOp.Score) {
997-
BestOp.Idx = Idx;
998-
BestOp.Score = Score;
811+
if (isa<Constant>(Op)) {
812+
unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
813+
if (Score > BestOp.Score) {
814+
BestOp.Idx = Idx;
815+
BestOp.Score = Score;
816+
}
999817
}
1000818
break;
1001-
}
1002819
case ReorderingMode::Splat:
1003820
if (Op == OpLastLane)
1004821
BestOp.Idx = Idx;
@@ -1129,8 +946,8 @@ class BoUpSLP {
1129946
public:
1130947
/// Initialize with all the operands of the instruction vector \p RootVL.
1131948
VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1132-
ScalarEvolution &SE, const BoUpSLP &R)
1133-
: DL(DL), SE(SE), R(R) {
949+
ScalarEvolution &SE)
950+
: DL(DL), SE(SE) {
1134951
// Append all the operands of RootVL.
1135952
appendOperandsOfVL(RootVL);
1136953
}
@@ -1352,8 +1169,7 @@ class BoUpSLP {
13521169
SmallVectorImpl<Value *> &Left,
13531170
SmallVectorImpl<Value *> &Right,
13541171
const DataLayout &DL,
1355-
ScalarEvolution &SE,
1356-
const BoUpSLP &R);
1172+
ScalarEvolution &SE);
13571173
struct TreeEntry {
13581174
using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
13591175
TreeEntry(VecTreeTy &Container) : Container(Container) {}
@@ -2555,7 +2371,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
25552371
// Commutative predicate - collect + sort operands of the instructions
25562372
// so that each side is more likely to have the same opcode.
25572373
assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2558-
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2374+
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
25592375
} else {
25602376
// Collect operands - commute if it uses the swapped predicate.
25612377
for (Value *V : VL) {
@@ -2599,7 +2415,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
25992415
// have the same opcode.
26002416
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
26012417
ValueList Left, Right;
2602-
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2418+
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
26032419
buildTree_rec(Left, Depth + 1, {TE, 0});
26042420
buildTree_rec(Right, Depth + 1, {TE, 1});
26052421
return;
@@ -2768,7 +2584,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
27682584
// Reorder operands if reordering would enable vectorization.
27692585
if (isa<BinaryOperator>(VL0)) {
27702586
ValueList Left, Right;
2771-
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2587+
reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
27722588
buildTree_rec(Left, Depth + 1, {TE, 0});
27732589
buildTree_rec(Right, Depth + 1, {TE, 1});
27742590
return;
@@ -3483,15 +3299,13 @@ int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
34833299

34843300
// Perform operand reordering on the instructions in VL and return the reordered
34853301
// operands in Left and Right.
3486-
void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3487-
SmallVectorImpl<Value *> &Left,
3488-
SmallVectorImpl<Value *> &Right,
3489-
const DataLayout &DL,
3490-
ScalarEvolution &SE,
3491-
const BoUpSLP &R) {
3302+
void BoUpSLP::reorderInputsAccordingToOpcode(
3303+
ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3304+
SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3305+
ScalarEvolution &SE) {
34923306
if (VL.empty())
34933307
return;
3494-
VLOperands Ops(VL, DL, SE, R);
3308+
VLOperands Ops(VL, DL, SE);
34953309
// Reorder the operands in place.
34963310
Ops.reorder();
34973311
Left = Ops.getVL(0);

0 commit comments

Comments
 (0)