forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparquet.py
508 lines (437 loc) · 16.9 KB
/
parquet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
""" parquet compat """
from __future__ import annotations
import io
import os
from typing import (
Any,
AnyStr,
)
from warnings import catch_warnings
from pandas._typing import (
FilePathOrBuffer,
StorageOptions,
)
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas import (
DataFrame,
MultiIndex,
get_option,
)
from pandas.core import generic
from pandas.util.version import Version
from pandas.io.common import (
IOHandles,
get_handle,
is_fsspec_url,
is_url,
stringify_path,
)
def get_engine(engine: str) -> BaseImpl:
"""return our implementation"""
if engine == "auto":
engine = get_option("io.parquet.engine")
if engine == "auto":
# try engines in this order
engine_classes = [PyArrowImpl, FastParquetImpl]
error_msgs = ""
for engine_class in engine_classes:
try:
return engine_class()
except ImportError as err:
error_msgs += "\n - " + str(err)
raise ImportError(
"Unable to find a usable engine; "
"tried using: 'pyarrow', 'fastparquet'.\n"
"A suitable version of "
"pyarrow or fastparquet is required for parquet "
"support.\n"
"Trying to import the above resulted in these errors:"
f"{error_msgs}"
)
if engine == "pyarrow":
return PyArrowImpl()
elif engine == "fastparquet":
return FastParquetImpl()
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
def _get_path_or_handle(
path: FilePathOrBuffer,
fs: Any,
storage_options: StorageOptions = None,
mode: str = "rb",
is_dir: bool = False,
) -> tuple[FilePathOrBuffer, IOHandles | None, Any]:
"""File handling for PyArrow."""
path_or_handle = stringify_path(path)
if is_fsspec_url(path_or_handle) and fs is None:
fsspec = import_optional_dependency("fsspec")
fs, path_or_handle = fsspec.core.url_to_fs(
path_or_handle, **(storage_options or {})
)
elif storage_options and (not is_url(path_or_handle) or mode != "rb"):
# can't write to a remote url
# without making use of fsspec at the moment
raise ValueError("storage_options passed with buffer, or non-supported URL")
handles = None
if (
not fs
and not is_dir
and isinstance(path_or_handle, str)
and not os.path.isdir(path_or_handle)
):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path_or_handle, mode, is_text=False, storage_options=storage_options
)
fs = None
path_or_handle = handles.handle
return path_or_handle, handles, fs
class BaseImpl:
@staticmethod
def validate_dataframe(df: DataFrame):
if not isinstance(df, DataFrame):
raise ValueError("to_parquet only supports IO with DataFrames")
# must have value column names for all index levels (strings only)
if isinstance(df.columns, MultiIndex):
if not all(
x.inferred_type in {"string", "empty"} for x in df.columns.levels
):
raise ValueError(
"""
parquet must have string column names for all values in
each level of the MultiIndex
"""
)
else:
if df.columns.inferred_type not in {"string", "empty"}:
raise ValueError("parquet must have string column names")
# index level names must be strings
valid_names = all(
isinstance(name, str) for name in df.index.names if name is not None
)
if not valid_names:
raise ValueError("Index level names must be strings")
def write(self, df: DataFrame, path, compression, **kwargs):
raise AbstractMethodError(self)
def read(self, path, columns=None, **kwargs):
raise AbstractMethodError(self)
class PyArrowImpl(BaseImpl):
def __init__(self):
import_optional_dependency(
"pyarrow", extra="pyarrow is required for parquet support."
)
import pyarrow.parquet
# import utils to register the pyarrow extension types
import pandas.core.arrays._arrow_utils # noqa
self.api = pyarrow
def write(
self,
df: DataFrame,
path: FilePathOrBuffer[AnyStr],
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions = None,
partition_cols: list[str] | None = None,
**kwargs,
):
self.validate_dataframe(df)
from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)}
if index is not None:
from_pandas_kwargs["preserve_index"] = index
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="wb",
is_dir=partition_cols is not None,
)
try:
if partition_cols is not None:
# writes to multiple files under the given path
self.api.parquet.write_to_dataset(
table,
path_or_handle,
compression=compression,
partition_cols=partition_cols,
**kwargs,
)
else:
# write to single output file
self.api.parquet.write_table(
table, path_or_handle, compression=compression, **kwargs
)
finally:
if handles is not None:
handles.close()
def read(
self,
path,
columns=None,
use_nullable_dtypes=False,
storage_options: StorageOptions = None,
**kwargs,
):
kwargs["use_pandas_metadata"] = True
to_pandas_kwargs = {}
if use_nullable_dtypes:
import pandas as pd
mapping = {
self.api.int8(): pd.Int8Dtype(),
self.api.int16(): pd.Int16Dtype(),
self.api.int32(): pd.Int32Dtype(),
self.api.int64(): pd.Int64Dtype(),
self.api.uint8(): pd.UInt8Dtype(),
self.api.uint16(): pd.UInt16Dtype(),
self.api.uint32(): pd.UInt32Dtype(),
self.api.uint64(): pd.UInt64Dtype(),
self.api.bool_(): pd.BooleanDtype(),
self.api.string(): pd.StringDtype(),
}
to_pandas_kwargs["types_mapper"] = mapping.get
manager = get_option("mode.data_manager")
if manager == "array":
to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment]
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="rb",
)
try:
result = self.api.parquet.read_table(
path_or_handle, columns=columns, **kwargs
).to_pandas(**to_pandas_kwargs)
if manager == "array":
result = result._as_manager("array", copy=False)
return result
finally:
if handles is not None:
handles.close()
class FastParquetImpl(BaseImpl):
def __init__(self):
# since pandas is a dependency of fastparquet
# we need to import on first use
fastparquet = import_optional_dependency(
"fastparquet", extra="fastparquet is required for parquet support."
)
self.api = fastparquet
def write(
self,
df: DataFrame,
path,
compression="snappy",
index=None,
partition_cols=None,
storage_options: StorageOptions = None,
**kwargs,
):
self.validate_dataframe(df)
# thriftpy/protocol/compact.py:339:
# DeprecationWarning: tostring() is deprecated.
# Use tobytes() instead.
if "partition_on" in kwargs and partition_cols is not None:
raise ValueError(
"Cannot use both partition_on and "
"partition_cols. Use partition_cols for partitioning data"
)
elif "partition_on" in kwargs:
partition_cols = kwargs.pop("partition_on")
if partition_cols is not None:
kwargs["file_scheme"] = "hive"
# cannot use get_handle as write() does not accept file buffers
path = stringify_path(path)
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
# if filesystem is provided by fsspec, file must be opened in 'wb' mode.
kwargs["open_with"] = lambda path, _: fsspec.open(
path, "wb", **(storage_options or {})
).open()
elif storage_options:
raise ValueError(
"storage_options passed with file object or non-fsspec file path"
)
with catch_warnings(record=True):
self.api.write(
path,
df,
compression=compression,
write_index=index,
partition_on=partition_cols,
**kwargs,
)
def read(
self, path, columns=None, storage_options: StorageOptions = None, **kwargs
):
parquet_kwargs = {}
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
# Technically works with 0.7.0, but was incorrect
# so lets just require 0.7.1
if Version(self.api.__version__) >= Version("0.7.1"):
# Need to set even for use_nullable_dtypes = False,
# since our defaults differ
parquet_kwargs["pandas_nulls"] = use_nullable_dtypes
else:
if use_nullable_dtypes:
raise ValueError(
"The 'use_nullable_dtypes' argument is not supported for the "
"fastparquet engine for fastparquet versions less than 0.7.1"
)
path = stringify_path(path)
handles = None
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
if Version(self.api.__version__) > Version("0.6.1"):
parquet_kwargs["fs"] = fsspec.open(
path, "rb", **(storage_options or {})
).fs
else:
parquet_kwargs["open_with"] = lambda path, _: fsspec.open(
path, "rb", **(storage_options or {})
).open()
elif isinstance(path, str) and not os.path.isdir(path):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path, "rb", is_text=False, storage_options=storage_options
)
path = handles.handle
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
result = parquet_file.to_pandas(columns=columns, **kwargs)
if handles is not None:
handles.close()
return result
@doc(storage_options=generic._shared_docs["storage_options"])
def to_parquet(
df: DataFrame,
path: FilePathOrBuffer | None = None,
engine: str = "auto",
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions = None,
partition_cols: list[str] | None = None,
**kwargs,
) -> bytes | None:
"""
Write a DataFrame to the parquet format.
Parameters
----------
df : DataFrame
path : str or file-like object, default None
If a string, it will be used as Root Directory path
when writing a partitioned dataset. By file-like object,
we refer to objects with a write() method, such as a file handle
(e.g. via builtin open function) or io.BytesIO. The engine
fastparquet does not accept file-like objects. If path is None,
a bytes object is returned.
.. versionchanged:: 1.2.0
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output. If
``False``, they will not be written to the file.
If ``None``, similar to ``True`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
partition_cols : str or list, optional, default None
Column names by which to partition the dataset.
Columns are partitioned in the order they are given.
Must be None if path is not a string.
{storage_options}
.. versionadded:: 1.2.0
kwargs
Additional keyword arguments passed to the engine
Returns
-------
bytes if no path argument is provided else None
"""
if isinstance(partition_cols, str):
partition_cols = [partition_cols]
impl = get_engine(engine)
path_or_buf: FilePathOrBuffer = io.BytesIO() if path is None else path
impl.write(
df,
path_or_buf,
compression=compression,
index=index,
partition_cols=partition_cols,
storage_options=storage_options,
**kwargs,
)
if path is None:
assert isinstance(path_or_buf, io.BytesIO)
return path_or_buf.getvalue()
else:
return None
@doc(storage_options=generic._shared_docs["storage_options"])
def read_parquet(
path,
engine: str = "auto",
columns=None,
storage_options: StorageOptions = None,
use_nullable_dtypes: bool = False,
**kwargs,
):
"""
Load a parquet object from the file path, returning a DataFrame.
Parameters
----------
path : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.parquet``.
A file URL can also be a path to a directory that contains multiple
partitioned parquet files. Both pyarrow and fastparquet support
paths to directories as well as file URLs. A directory path could be:
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``
If you want to pass in a path object, pandas accepts any
``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handle (e.g. via builtin ``open`` function)
or ``StringIO``.
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
columns : list, default=None
If not None, only these columns will be read from the file.
{storage_options}
.. versionadded:: 1.3.0
use_nullable_dtypes : bool, default False
If True, use dtypes that use ``pd.NA`` as missing value indicator
for the resulting DataFrame.
As new dtypes are added that support ``pd.NA`` in the future, the
output with this option will change to use those dtypes.
Note: this is an experimental option, and behaviour (e.g. additional
support dtypes) may change without notice.
.. versionadded:: 1.2.0
.. versionchanged:: 1.3.2
``use_nullable_dtypes`` now works with the the ``fastparquet`` engine
if ``fastparquet`` is version 0.7.1 or higher.
**kwargs
Any additional kwargs are passed to the engine.
Returns
-------
DataFrame
"""
impl = get_engine(engine)
return impl.read(
path,
columns=columns,
storage_options=storage_options,
use_nullable_dtypes=use_nullable_dtypes,
**kwargs,
)