@@ -45,7 +45,7 @@ def mxnet_training_job(sagemaker_session, mxnet_full_version):
45
45
def test_attach_deploy (mxnet_training_job , sagemaker_session ):
46
46
endpoint_name = 'test-mxnet-attach-deploy-{}' .format (sagemaker_timestamp ())
47
47
48
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
48
+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
49
49
estimator = MXNet .attach (mxnet_training_job , sagemaker_session = sagemaker_session )
50
50
predictor = estimator .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
51
51
data = numpy .zeros (shape = (1 , 1 , 28 , 28 ))
@@ -55,7 +55,7 @@ def test_attach_deploy(mxnet_training_job, sagemaker_session):
55
55
def test_deploy_model (mxnet_training_job , sagemaker_session ):
56
56
endpoint_name = 'test-mxnet-deploy-model-{}' .format (sagemaker_timestamp ())
57
57
58
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
58
+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
59
59
desc = sagemaker_session .sagemaker_client .describe_training_job (TrainingJobName = mxnet_training_job )
60
60
model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
61
61
script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
@@ -88,7 +88,7 @@ def test_async_fit(sagemaker_session):
88
88
print ("Waiting to re-attach to the training job: %s" % training_job_name )
89
89
time .sleep (20 )
90
90
91
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 35 ):
91
+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
92
92
print ("Re-attaching now to: %s" % training_job_name )
93
93
estimator = MXNet .attach (training_job_name = training_job_name , sagemaker_session = sagemaker_session )
94
94
predictor = estimator .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
0 commit comments