@@ -4,10 +4,9 @@ SageMaker PyTorch Estimators and Models
4
4
5
5
With PyTorch Estimators and Models, you can train and host PyTorch models on Amazon SageMaker.
6
6
7
- Supported versions of PyTorch: ``0.4.0 ``, ``1.0.0.dev `` ("Preview") .
7
+ Supported versions of PyTorch: ``0.4.0 ``, ``1.0.0 `` .
8
8
9
- You can try the "Preview" version of PyTorch by specifying ``1.0.0.dev `` for ``framework_version `` when creating your PyTorch estimator.
10
- This will ensure you're using the latest version of ``torch-nightly ``.
9
+ We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
11
10
12
11
You can visit the PyTorch repository at https://github.com/pytorch/pytorch.
13
12
@@ -49,7 +48,7 @@ You can then setup a ``PyTorch`` Estimator with keyword arguments to point to th
49
48
role = ' SageMakerRole' ,
50
49
train_instance_type = ' ml.p3.2xlarge' ,
51
50
train_instance_count = 1 ,
52
- framework_version = ' 0.4 .0' )
51
+ framework_version = ' 1.0 .0' )
53
52
54
53
After that, you simply tell the estimator to start a training job and provide an S3 URL
55
54
that is the path to your training data within Amazon S3:
@@ -137,7 +136,7 @@ directories ('train' and 'test').
137
136
pytorch_estimator = PyTorch(' pytorch-train.py' ,
138
137
train_instance_type = ' ml.p3.2xlarge' ,
139
138
train_instance_count = 1 ,
140
- framework_version = ' 0.4 .0' ,
139
+ framework_version = ' 1.0 .0' ,
141
140
hyperparameters = {' epochs' : 20 , ' batch-size' : 64 , ' learning-rate' : 0.1 })
142
141
pytorch_estimator.fit({' train' : ' s3://my-data-bucket/path/to/my/training/data' ,
143
142
' test' : ' s3://my-data-bucket/path/to/my/test/data' })
@@ -338,7 +337,7 @@ operation.
338
337
pytorch_estimator = PyTorch(entry_point = ' train_and_deploy.py' ,
339
338
train_instance_type = ' ml.p3.2xlarge' ,
340
339
train_instance_count = 1 ,
341
- framework_version = ' 0.4 .0' )
340
+ framework_version = ' 1.0 .0' )
342
341
pytorch_estimator.fit(' s3://my_bucket/my_training_data/' )
343
342
344
343
# Deploy my estimator to a SageMaker Endpoint and get a Predictor
@@ -675,21 +674,21 @@ When training and deploying training scripts, SageMaker runs your Python script
675
674
libraries installed. When creating the Estimator and calling deploy to create the SageMaker Endpoint, you can control
676
675
the environment your script runs in.
677
676
678
- SageMaker runs PyTorch Estimator scripts in either Python 2.7 or Python 3.5 . You can select the Python version by
677
+ SageMaker runs PyTorch Estimator scripts in either Python 2 or Python 3. You can select the Python version by
679
678
passing a ``py_version `` keyword arg to the PyTorch Estimator constructor. Setting this to `py3 ` (the default) will cause your
680
679
training script to be run on Python 3.5. Setting this to `py2 ` will cause your training script to be run on Python 2.7
681
680
This Python version applies to both the Training Job, created by fit, and the Endpoint, created by deploy.
682
681
683
682
The PyTorch Docker images have the following dependencies installed:
684
683
685
684
+-----------------------------+---------------+-------------------+
686
- | Dependencies | pytorch 0.4.0 | pytorch 1.0.0.dev |
685
+ | Dependencies | pytorch 0.4.0 | pytorch 1.0.0 |
687
686
+-----------------------------+---------------+-------------------+
688
687
| boto3 | >=1.7.35 | >=1.9.11 |
689
688
+-----------------------------+---------------+-------------------+
690
689
| botocore | >=1.10.35 | >=1.12.11 |
691
690
+-----------------------------+---------------+-------------------+
692
- | CUDA (GPU image only) | 9.0 | 9.2 |
691
+ | CUDA (GPU image only) | 9.0 | 9.0 |
693
692
+-----------------------------+---------------+-------------------+
694
693
| numpy | >=1.14.3 | >=1.15.2 |
695
694
+-----------------------------+---------------+-------------------+
@@ -711,11 +710,11 @@ The PyTorch Docker images have the following dependencies installed:
711
710
+-----------------------------+---------------+-------------------+
712
711
| six | >=1.11.0 | >=1.11.0 |
713
712
+-----------------------------+---------------+-------------------+
714
- | torch (torch-nightly) | 0.4.0 | 1.0.0.dev |
713
+ | torch | 0.4.0 | 1.0.0 |
715
714
+-----------------------------+---------------+-------------------+
716
715
| torchvision | 0.2.1 | 0.2.1 |
717
716
+-----------------------------+---------------+-------------------+
718
- | Python | 2.7 or 3.5 | 2.7 or 3.5 |
717
+ | Python | 2.7 or 3.5 | 2.7 or 3.6 |
719
718
+-----------------------------+---------------+-------------------+
720
719
721
720
The Docker images extend Ubuntu 16.04.
0 commit comments