forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
183 lines (156 loc) · 7.49 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
import logging
import sagemaker
from sagemaker.fw_utils import (
create_image_uri,
model_code_key_prefix,
python_deprecation_warning,
validate_version_or_image_args,
)
from sagemaker.model import FrameworkModel, MODEL_SERVER_WORKERS_PARAM_NAME
from sagemaker.chainer import defaults
from sagemaker.predictor import Predictor, npy_serializer, numpy_deserializer
logger = logging.getLogger("sagemaker")
class ChainerPredictor(Predictor):
"""A Predictor for inference against Chainer Endpoints.
This is able to serialize Python lists, dictionaries, and numpy arrays to
multidimensional tensors for Chainer inference.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""Initialize an ``ChainerPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference
on.
sagemaker_session (sagemaker.session.Session): Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
"""
super(ChainerPredictor, self).__init__(
endpoint_name, sagemaker_session, npy_serializer, numpy_deserializer
)
class ChainerModel(FrameworkModel):
"""An Chainer SageMaker ``Model`` that can be deployed to a SageMaker
``Endpoint``.
"""
__framework_name__ = "chainer"
def __init__(
self,
model_data,
role,
entry_point,
image_uri=None,
framework_version=None,
py_version=None,
predictor_cls=ChainerPredictor,
model_server_workers=None,
**kwargs
):
"""Initialize an ChainerModel.
Args:
model_data (str): The S3 location of a SageMaker model data
``.tar.gz`` file.
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if it needs to access an AWS resource.
entry_point (str): Path (absolute or relative) to the Python source
file which should be executed as the entry point to model
hosting. If ``source_dir`` is specified, then ``entry_point``
must point to a file located at the root of ``source_dir``.
image_uri (str): A Docker image URI (default: None). If not specified, a
default image for Chainer will be used. If ``framework_version``
or ``py_version`` are ``None``, then ``image_uri`` is required. If
also ``None``, then a ``ValueError`` will be raised.
framework_version (str): Chainer version you want to use for
executing your model training code. Defaults to ``None``. Required
unless ``image_uri`` is provided.
py_version (str): Python version you want to use for executing your
model training code. Defaults to ``None``. Required unless
``image_uri`` is provided.
predictor_cls (callable[str, sagemaker.session.Session]): A function
to call to create a predictor with an endpoint name and
SageMaker ``Session``. If specified, ``deploy()`` returns the
result of invoking this function on the created endpoint name.
model_server_workers (int): Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
**kwargs: Keyword arguments passed to the
:class:`~sagemaker.model.FrameworkModel` initializer.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.model.FrameworkModel` and
:class:`~sagemaker.model.Model`.
"""
validate_version_or_image_args(framework_version, py_version, image_uri)
if py_version == "py2":
logger.warning(
python_deprecation_warning(self.__framework_name__, defaults.LATEST_PY2_VERSION)
)
self.framework_version = framework_version
self.py_version = py_version
super(ChainerModel, self).__init__(
model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
)
self.model_server_workers = model_server_workers
def prepare_container_def(self, instance_type=None, accelerator_type=None):
"""Return a container definition with framework configuration set in
model environment variables.
Args:
instance_type (str): The EC2 instance type to deploy this Model to.
For example, 'ml.p2.xlarge'.
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model. For example, 'ml.eia1.medium'.
Returns:
dict[str, str]: A container definition object usable with the
CreateModel API.
"""
deploy_image = self.image_uri
if not deploy_image:
if instance_type is None:
raise ValueError(
"Must supply either an instance type (for choosing CPU vs GPU) or an image URI."
)
region_name = self.sagemaker_session.boto_session.region_name
deploy_image = self.serving_image_uri(
region_name, instance_type, accelerator_type=accelerator_type
)
deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(deploy_key_prefix)
deploy_env = dict(self.env)
deploy_env.update(self._framework_env_vars())
if self.model_server_workers:
deploy_env[MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(self.model_server_workers)
return sagemaker.container_def(deploy_image, self.model_data, deploy_env)
def serving_image_uri(self, region_name, instance_type, accelerator_type=None):
"""Create a URI for the serving image.
Args:
region_name (str): AWS region where the image is uploaded.
instance_type (str): SageMaker instance type. Used to determine device type
(cpu/gpu/family-specific optimized).
Returns:
str: The appropriate image URI based on the given parameters.
"""
return create_image_uri(
region_name,
self.__framework_name__,
instance_type,
self.framework_version,
self.py_version,
accelerator_type=accelerator_type,
)