forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoml.py
773 lines (666 loc) · 32 KB
/
automl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""A class for SageMaker AutoML Jobs."""
from __future__ import absolute_import
import logging
from six import string_types
from sagemaker import Model, PipelineModel
from sagemaker.automl.candidate_estimator import CandidateEstimator
from sagemaker.job import _Job
from sagemaker.session import Session
from sagemaker.utils import name_from_base
logger = logging.getLogger("sagemaker")
class AutoML(object):
"""A class for creating and interacting with SageMaker AutoML jobs
"""
def __init__(
self,
role,
target_attribute_name,
output_kms_key=None,
output_path=None,
base_job_name=None,
compression_type=None,
sagemaker_session=None,
volume_kms_key=None,
encrypt_inter_container_traffic=False,
vpc_config=None,
problem_type=None,
max_candidates=None,
max_runtime_per_training_job_in_seconds=None,
total_job_runtime_in_seconds=None,
job_objective=None,
generate_candidate_definitions_only=False,
tags=None,
):
self.role = role
self.output_kms_key = output_kms_key
self.output_path = output_path
self.base_job_name = base_job_name
self.compression_type = compression_type
self.volume_kms_key = volume_kms_key
self.encrypt_inter_container_traffic = encrypt_inter_container_traffic
self.vpc_config = vpc_config
self.problem_type = problem_type
self.max_candidate = max_candidates
self.max_runtime_per_training_job_in_seconds = max_runtime_per_training_job_in_seconds
self.total_job_runtime_in_seconds = total_job_runtime_in_seconds
self.target_attribute_name = target_attribute_name
self.job_objective = job_objective
self.generate_candidate_definitions_only = generate_candidate_definitions_only
self.tags = tags
self.current_job_name = None
self._auto_ml_job_desc = None
self._best_candidate = None
self.sagemaker_session = sagemaker_session or Session()
self._check_problem_type_and_job_objective(self.problem_type, self.job_objective)
def fit(self, inputs=None, wait=True, logs=True, job_name=None):
"""Create an AutoML Job with the input dataset.
Args:
inputs (str or list[str] or AutoMLInput): Local path or S3 Uri where the training data
is stored. Or an AutoMLInput object. If a local path is provided, the dataset will
be uploaded to an S3 location.
wait (bool): Whether the call should wait until the job completes (default: True).
logs (bool): Whether to show the logs produced by the job. Only meaningful when wait
is True (default: True). if ``wait`` is False, ``logs`` will be set to False as
well.
job_name (str): Training job name. If not specified, the estimator generates
a default job name, based on the training image name and current timestamp.
"""
if not wait and logs:
logs = False
logger.warning("Setting logs to False. logs is only meaningful when wait is True.")
# upload data for users if provided local path
# validations are done in _Job._format_inputs_to_input_config
if isinstance(inputs, string_types):
if not inputs.startswith("s3://"):
inputs = self.sagemaker_session.upload_data(inputs, key_prefix="auto-ml-input-data")
self._prepare_for_auto_ml_job(job_name=job_name)
self.latest_auto_ml_job = AutoMLJob.start_new(self, inputs) # pylint: disable=W0201
if wait:
self.latest_auto_ml_job.wait(logs=logs)
@classmethod
def attach(cls, auto_ml_job_name, sagemaker_session=None):
"""Attach to an existing AutoML job.
Creates and returns a AutoML bound to an existing automl job.
Args:
auto_ml_job_name (str): AutoML job name
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, the one originally associated with the ``AutoML`` instance is used.
Returns:
sagemaker.automl.AutoML: A ``AutoML`` instance with the attached automl job.
"""
sagemaker_session = sagemaker_session or Session()
auto_ml_job_desc = sagemaker_session.describe_auto_ml_job(auto_ml_job_name)
automl_job_tags = sagemaker_session.sagemaker_client.list_tags(
ResourceArn=auto_ml_job_desc["AutoMLJobArn"]
)["Tags"]
amlj = AutoML(
role=auto_ml_job_desc["RoleArn"],
target_attribute_name=auto_ml_job_desc["InputDataConfig"][0]["TargetAttributeName"],
output_kms_key=auto_ml_job_desc["OutputDataConfig"].get("KmsKeyId"),
output_path=auto_ml_job_desc["OutputDataConfig"]["S3OutputPath"],
base_job_name=auto_ml_job_name,
compression_type=auto_ml_job_desc["InputDataConfig"][0].get("CompressionType"),
sagemaker_session=sagemaker_session,
volume_kms_key=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("SecurityConfig", {})
.get("VolumeKmsKeyId"),
encrypt_inter_container_traffic=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("SecurityConfig", {})
.get("EnableInterContainerTrafficEncryption", False),
vpc_config=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("SecurityConfig", {})
.get("VpcConfig"),
problem_type=auto_ml_job_desc.get("ProblemType"),
max_candidates=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("CompletionCriteria", {})
.get("MaxCandidates"),
max_runtime_per_training_job_in_seconds=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("CompletionCriteria", {})
.get("MaxRuntimePerTrainingJobInSeconds"),
total_job_runtime_in_seconds=auto_ml_job_desc.get("AutoMLJobConfig", {})
.get("CompletionCriteria", {})
.get("MaxAutoMLJobRuntimeInSeconds"),
job_objective=auto_ml_job_desc.get("AutoMLJobObjective", {}).get("MetricName"),
generate_candidate_definitions_only=auto_ml_job_desc.get(
"GenerateCandidateDefinitionsOnly", False
),
tags=automl_job_tags,
)
amlj.current_job_name = auto_ml_job_name
amlj.latest_auto_ml_job = auto_ml_job_name # pylint: disable=W0201
amlj._auto_ml_job_desc = auto_ml_job_desc
return amlj
def describe_auto_ml_job(self, job_name=None):
"""Returns the job description of an AutoML job for the given job name.
Args:
job_name (str): The name of the AutoML job to describe.
If None, will use object's latest_auto_ml_job name.
Returns:
dict: A dictionary response with the AutoML Job description.
"""
if job_name is None:
job_name = self.current_job_name
self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name)
return self._auto_ml_job_desc
def best_candidate(self, job_name=None):
"""Returns the best candidate of an AutoML job for a given name
Args:
job_name (str): The name of the AutoML job. If None, will use object's
_current_auto_ml_job_name.
Returns:
dict: a dictionary with information of the best candidate
"""
if self._best_candidate:
return self._best_candidate
if job_name is None:
job_name = self.current_job_name
if self._auto_ml_job_desc is None:
self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name)
elif self._auto_ml_job_desc["AutoMLJobName"] != job_name:
self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name)
self._best_candidate = self._auto_ml_job_desc["BestCandidate"]
return self._best_candidate
def list_candidates(
self,
job_name=None,
status_equals=None,
candidate_name=None,
candidate_arn=None,
sort_order=None,
sort_by=None,
max_results=None,
):
"""Returns the list of candidates of an AutoML job for a given name.
Args:
job_name (str): The name of the AutoML job. If None, will use object's
_current_job name.
status_equals (str): Filter the result with candidate status, values could be
"Completed", "InProgress", "Failed", "Stopped", "Stopping"
candidate_name (str): The name of a specified candidate to list.
Default to None.
candidate_arn (str): The Arn of a specified candidate to list.
Default to None.
sort_order (str): The order that the candidates will be listed in result.
Default to None.
sort_by (str): The value that the candidates will be sorted by.
Default to None.
max_results (int): The number of candidates will be listed in results,
between 1 to 100. Default to None. If None, will return all the candidates.
Returns:
list: A list of dictionaries with candidates information
"""
if job_name is None:
job_name = self.current_job_name
list_candidates_args = {"job_name": job_name}
if status_equals:
list_candidates_args["status_equals"] = status_equals
if candidate_name:
list_candidates_args["candidate_name"] = candidate_name
if candidate_arn:
list_candidates_args["candidate_arn"] = candidate_arn
if sort_order:
list_candidates_args["sort_order"] = sort_order
if sort_by:
list_candidates_args["sort_by"] = sort_by
if max_results:
list_candidates_args["max_results"] = max_results
return self.sagemaker_session.list_candidates(**list_candidates_args)["Candidates"]
def create_model(
self,
name,
sagemaker_session=None,
candidate=None,
vpc_config=None,
enable_network_isolation=False,
model_kms_key=None,
predictor_cls=None,
inference_response_keys=None,
):
"""Creates a model from a given candidate or the best candidate
from the automl job
Args:
name (str): The pipeline model name.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, the one originally associated with the ``AutoML`` instance is used.:
candidate (CandidateEstimator or dict): a CandidateEstimator used for deploying
to a SageMaker Inference Pipeline. If None, the best candidate will
be used. If the candidate input is a dict, a CandidateEstimator will be
created from it.
vpc_config (dict): Specifies a VPC that your training jobs and hosted models have
access to. Contents include "SecurityGroupIds" and "Subnets".
enable_network_isolation (bool): Isolates the training container. No inbound or
outbound network calls can be made, except for calls between peers within a
training cluster for distributed training. Default: False
model_kms_key (str): KMS key ARN used to encrypt the repacked
model archive file if the model is repacked
predictor_cls (callable[string, sagemaker.session.Session]): A
function to call to create a predictor (default: None). If
specified, ``deploy()`` returns the result of invoking this
function on the created endpoint name.
inference_response_keys (list): List of keys for response content. The order of the
keys will dictate the content order in the response.
Returns:
PipelineModel object
"""
sagemaker_session = sagemaker_session or self.sagemaker_session
if candidate is None:
candidate_dict = self.best_candidate()
candidate = CandidateEstimator(candidate_dict, sagemaker_session=sagemaker_session)
elif isinstance(candidate, dict):
candidate = CandidateEstimator(candidate, sagemaker_session=sagemaker_session)
inference_containers = candidate.containers
self.validate_and_update_inference_response(inference_containers, inference_response_keys)
# construct Model objects
models = []
for container in inference_containers:
image_uri = container["Image"]
model_data = container["ModelDataUrl"]
env = container["Environment"]
model = Model(
image_uri=image_uri,
model_data=model_data,
role=self.role,
env=env,
vpc_config=vpc_config,
sagemaker_session=sagemaker_session or self.sagemaker_session,
enable_network_isolation=enable_network_isolation,
model_kms_key=model_kms_key,
)
models.append(model)
pipeline = PipelineModel(
models=models,
role=self.role,
predictor_cls=predictor_cls,
name=name,
vpc_config=vpc_config,
sagemaker_session=sagemaker_session or self.sagemaker_session,
)
return pipeline
def deploy(
self,
initial_instance_count,
instance_type,
candidate=None,
sagemaker_session=None,
name=None,
endpoint_name=None,
tags=None,
wait=True,
vpc_config=None,
enable_network_isolation=False,
model_kms_key=None,
predictor_cls=None,
inference_response_keys=None,
):
"""Deploy a candidate to a SageMaker Inference Pipeline and return a Predictor
Args:
initial_instance_count (int): The initial number of instances to run
in the ``Endpoint`` created from this ``Model``.
instance_type (str): The EC2 instance type to deploy this Model to.
For example, 'ml.p2.xlarge'.
candidate (CandidateEstimator or dict): a CandidateEstimator used for deploying
to a SageMaker Inference Pipeline. If None, the best candidate will
be used. If the candidate input is a dict, a CandidateEstimator will be
created from it.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, the one originally associated with the ``AutoML`` instance is used.
name (str): The pipeline model name. If None, a default model name will
be selected on each ``deploy``.
endpoint_name (str): The name of the endpoint to create (default:
None). If not specified, a unique endpoint name will be created.
tags (List[dict[str, str]]): The list of tags to attach to this
specific endpoint.
wait (bool): Whether the call should wait until the deployment of
model completes (default: True).
vpc_config (dict): Specifies a VPC that your training jobs and hosted models have
access to. Contents include "SecurityGroupIds" and "Subnets".
enable_network_isolation (bool): Isolates the training container. No inbound or
outbound network calls can be made, except for calls between peers within a
training cluster for distributed training. Default: False
model_kms_key (str): KMS key ARN used to encrypt the repacked
model archive file if the model is repacked
predictor_cls (callable[string, sagemaker.session.Session]): A
function to call to create a predictor (default: None). If
specified, ``deploy()`` returns the result of invoking this
function on the created endpoint name.
inference_response_keys (list): List of keys for response content. The order of the
keys will dictate the content order in the response.
Returns:
callable[string, sagemaker.session.Session] or ``None``:
If ``predictor_cls`` is specified, the invocation of ``self.predictor_cls`` on
the created endpoint name. Otherwise, ``None``.
"""
sagemaker_session = sagemaker_session or self.sagemaker_session
model = self.create_model(
name=name,
sagemaker_session=sagemaker_session,
candidate=candidate,
inference_response_keys=inference_response_keys,
vpc_config=vpc_config,
enable_network_isolation=enable_network_isolation,
model_kms_key=model_kms_key,
predictor_cls=predictor_cls,
)
return model.deploy(
initial_instance_count=initial_instance_count,
instance_type=instance_type,
endpoint_name=endpoint_name,
tags=tags,
wait=wait,
)
def _check_problem_type_and_job_objective(self, problem_type, job_objective):
"""Validate if problem_type and job_objective are both None or are both provided.
Args:
problem_type (str): The type of problem of this AutoMLJob. Valid values are
"Regression", "BinaryClassification", "MultiClassClassification".
job_objective (dict): AutoMLJob objective, contains "AutoMLJobObjectiveType" (optional),
"MetricName" and "Value".
Raises (ValueError): raises ValueError if one of problem_type and job_objective is provided
while the other is None.
"""
if not (problem_type and job_objective) and (problem_type or job_objective):
raise ValueError(
"One of problem type and objective metric provided. "
"Either both of them should be provided or none of them should be provided."
)
def _prepare_for_auto_ml_job(self, job_name=None):
"""Set any values in the AutoMLJob that need to be set before creating request.
Args:
job_name (str): The name of the AutoML job. If None, a job name will be
created from base_job_name or "sagemaker-auto-ml".
"""
if job_name is not None:
self.current_job_name = job_name
else:
if self.base_job_name:
base_name = self.base_job_name
else:
base_name = "automl"
# CreateAutoMLJob API validates that member length less than or equal to 32
self.current_job_name = name_from_base(base_name, max_length=32)
if self.output_path is None:
self.output_path = "s3://{}/".format(self.sagemaker_session.default_bucket())
@classmethod
def _get_supported_inference_keys(cls, container, default=None):
"""Returns the inference keys supported by the container.
Args:
container (dict): Dictionary representing container
default (object): The value to be returned if the container definition
has no marker environment variable
Returns:
List of keys the container support or default
Raises:
KeyError if the default is None and the container definition has
no marker environment variable SAGEMAKER_INFERENCE_SUPPORTED.
"""
try:
return [
x.strip()
for x in container["Environment"]["SAGEMAKER_INFERENCE_SUPPORTED"].split(",")
]
except KeyError:
if default is None:
raise
return default
@classmethod
def _check_inference_keys(cls, inference_response_keys, containers):
"""Given an inference container list, checks if the pipeline supports the
requested inference keys
Args:
inference_response_keys (list): List of keys for inference response content
containers (list): list of inference container
Raises:
ValueError, if one or more keys in inference_response_keys are not supported
the inference pipeline.
"""
if not inference_response_keys:
return
try:
supported_inference_keys = cls._get_supported_inference_keys(container=containers[-1])
except KeyError:
raise ValueError(
"The inference model does not support selection of inference content beyond "
"it's default content. Please retry without setting "
"inference_response_keys key word argument."
)
bad_keys = []
for key in inference_response_keys:
if key not in supported_inference_keys:
bad_keys.append(key)
if bad_keys:
raise ValueError(
"Requested inference output keys [{bad_keys_str}] are unsupported. "
"The supported inference keys are [{allowed_keys_str}]".format(
bad_keys_str=", ".join(bad_keys),
allowed_keys_str=", ".join(supported_inference_keys),
)
)
@classmethod
def validate_and_update_inference_response(cls, inference_containers, inference_response_keys):
"""Validates the requested inference keys and updates inference containers to emit the
requested content in the inference response.
Args:
inference_containers (list): list of inference containers
inference_response_keys (list): list of inference response keys
Raises:
ValueError: if one or more of inference_response_keys are unsupported by the model
"""
if not inference_response_keys:
return
cls._check_inference_keys(inference_response_keys, inference_containers)
previous_container_output = None
for container in inference_containers:
supported_inference_keys_container = cls._get_supported_inference_keys(
container, default=[]
)
if not supported_inference_keys_container:
previous_container_output = None
continue
current_container_output = None
for key in inference_response_keys:
if key in supported_inference_keys_container:
current_container_output = (
current_container_output + "," + key if current_container_output else key
)
if previous_container_output:
container["Environment"].update(
{"SAGEMAKER_INFERENCE_INPUT": previous_container_output}
)
if current_container_output:
container["Environment"].update(
{"SAGEMAKER_INFERENCE_OUTPUT": current_container_output}
)
previous_container_output = current_container_output
class AutoMLInput(object):
"""Accepts parameters that specify an S3 input for an auto ml job and provides
a method to turn those parameters into a dictionary."""
def __init__(self, inputs, target_attribute_name, compression=None):
"""Convert an S3 Uri or a list of S3 Uri to an AutoMLInput object.
:param inputs (str, list[str]): a string or a list of string that points to (a)
S3 location(s) where input data is stored.
:param target_attribute_name (str): the target attribute name for regression
or classification.
:param compression (str): if training data is compressed, the compression type.
The default value is None.
"""
self.inputs = inputs
self.target_attribute_name = target_attribute_name
self.compression = compression
def to_request_dict(self):
"""Generates a request dictionary using the parameters provided to the class."""
# Create the request dictionary.
auto_ml_input = []
if isinstance(self.inputs, string_types):
self.inputs = [self.inputs]
for entry in self.inputs:
input_entry = {
"DataSource": {"S3DataSource": {"S3DataType": "S3Prefix", "S3Uri": entry}},
"TargetAttributeName": self.target_attribute_name,
}
if self.compression is not None:
input_entry["CompressionType"] = self.compression
auto_ml_input.append(input_entry)
return auto_ml_input
class AutoMLJob(_Job):
"""A class for interacting with CreateAutoMLJob API."""
def __init__(self, sagemaker_session, job_name, inputs):
self.inputs = inputs
self.job_name = job_name
super(AutoMLJob, self).__init__(sagemaker_session=sagemaker_session, job_name=job_name)
@classmethod
def start_new(cls, auto_ml, inputs):
"""Create a new Amazon SageMaker AutoML job from auto_ml.
Args:
auto_ml (sagemaker.automl.AutoML): AutoML object
created by the user.
inputs (str, list[str]): Parameters used when called
:meth:`~sagemaker.automl.AutoML.fit`.
Returns:
sagemaker.automl.AutoMLJob: Constructed object that captures
all information about the started AutoML job.
"""
config = cls._load_config(inputs, auto_ml)
auto_ml_args = config.copy()
auto_ml_args["job_name"] = auto_ml.current_job_name
auto_ml_args["problem_type"] = auto_ml.problem_type
auto_ml_args["job_objective"] = auto_ml.job_objective
auto_ml_args["tags"] = auto_ml.tags
auto_ml.sagemaker_session.auto_ml(**auto_ml_args)
return cls(auto_ml.sagemaker_session, auto_ml.current_job_name, inputs)
@classmethod
def _load_config(cls, inputs, auto_ml, expand_role=True, validate_uri=True):
"""Load job_config, input_config and output config from auto_ml and inputs.
Args:
inputs (str): S3 Uri where the training data is stored, must start
with "s3://".
auto_ml (AutoML): an AutoML object that user initiated.
expand_role (str): The expanded role arn that allows for Sagemaker
executionts.
validate_uri (bool): indicate whether to validate the S3 uri.
Returns (dict): a config dictionary that contains input_config, output_config,
job_config and role information.
"""
# JobConfig
# InputDataConfig
# OutputConfig
if isinstance(inputs, AutoMLInput):
input_config = inputs.to_request_dict()
else:
input_config = cls._format_inputs_to_input_config(
inputs, validate_uri, auto_ml.compression_type, auto_ml.target_attribute_name
)
output_config = _Job._prepare_output_config(auto_ml.output_path, auto_ml.output_kms_key)
role = auto_ml.sagemaker_session.expand_role(auto_ml.role) if expand_role else auto_ml.role
stop_condition = cls._prepare_auto_ml_stop_condition(
auto_ml.max_candidate,
auto_ml.max_runtime_per_training_job_in_seconds,
auto_ml.total_job_runtime_in_seconds,
)
auto_ml_job_config = {
"CompletionCriteria": stop_condition,
"SecurityConfig": {
"EnableInterContainerTrafficEncryption": auto_ml.encrypt_inter_container_traffic
},
}
if auto_ml.volume_kms_key:
auto_ml_job_config["SecurityConfig"]["VolumeKmsKeyId"] = auto_ml.volume_kms_key
if auto_ml.vpc_config:
auto_ml_job_config["SecurityConfig"]["VpcConfig"] = auto_ml.vpc_config
config = {
"input_config": input_config,
"output_config": output_config,
"auto_ml_job_config": auto_ml_job_config,
"role": role,
"generate_candidate_definitions_only": auto_ml.generate_candidate_definitions_only,
}
return config
@classmethod
def _format_inputs_to_input_config(
cls, inputs, validate_uri=True, compression=None, target_attribute_name=None
):
"""Convert inputs to AutoML InputDataConfig.
Args:
inputs (str, list[str]): local path(s) or S3 uri(s) of input datasets.
validate_uri (bool): indicates whether it is needed to validate S3 uri.
compression (str):
target_attribute_name (str): the target attribute name for classification
or regression.
Returns (dict): a dict of AutoML InputDataConfig
"""
if inputs is None:
return None
channels = []
if isinstance(inputs, AutoMLInput):
channels.append(inputs.to_request_dict())
elif isinstance(inputs, string_types):
channel = _Job._format_string_uri_input(
inputs,
validate_uri,
compression=compression,
target_attribute_name=target_attribute_name,
).config
channels.append(channel)
elif isinstance(inputs, list):
for input_entry in inputs:
channel = _Job._format_string_uri_input(
input_entry,
validate_uri,
compression=compression,
target_attribute_name=target_attribute_name,
).config
channels.append(channel)
else:
msg = "Cannot format input {}. Expecting a string or a list of strings."
raise ValueError(msg.format(inputs))
for channel in channels:
if channel["TargetAttributeName"] is None:
raise ValueError("TargetAttributeName cannot be None.")
return channels
@classmethod
def _prepare_auto_ml_stop_condition(
cls, max_candidates, max_runtime_per_training_job_in_seconds, total_job_runtime_in_seconds
):
"""Defines the CompletionCriteria of an AutoMLJob.
Args:
max_candidates (int): the maximum number of candidates returned by an
AutoML job.
max_runtime_per_training_job_in_seconds (int): the maximum time of each
training job in seconds.
total_job_runtime_in_seconds (int): the total wait time of an AutoML job.
Returns (dict): an AutoML CompletionCriteria.
"""
stopping_condition = {"MaxCandidates": max_candidates}
if max_runtime_per_training_job_in_seconds is not None:
stopping_condition[
"MaxRuntimePerTrainingJobInSeconds"
] = max_runtime_per_training_job_in_seconds
if total_job_runtime_in_seconds is not None:
stopping_condition["MaxAutoMLJobRuntimeInSeconds"] = total_job_runtime_in_seconds
return stopping_condition
def describe(self):
"""Prints out a response from the DescribeAutoMLJob API call."""
return self.sagemaker_session.describe_auto_ml_job(self.job_name)
def wait(self, logs=True):
"""Wait for the AutoML job to finish.
Args:
logs (bool): indicate whether to output logs.
"""
if logs:
self.sagemaker_session.logs_for_auto_ml_job(self.job_name, wait=True)
else:
self.sagemaker_session.wait_for_auto_ml_job(self.job_name)