forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandomcutforest.py
219 lines (191 loc) · 9.15 KB
/
randomcutforest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, le
from sagemaker.predictor import Predictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class RandomCutForest(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "randomcutforest"
repo_version = 1
MINI_BATCH_SIZE = 1000
eval_metrics = hp(
name="eval_metrics",
validation_message='A comma separated list of "accuracy" or "precision_recall_fscore"',
data_type=list,
)
num_trees = hp("num_trees", (ge(50), le(1000)), "An integer in [50, 1000]", int)
num_samples_per_tree = hp(
"num_samples_per_tree", (ge(1), le(2048)), "An integer in [1, 2048]", int
)
feature_dim = hp("feature_dim", (ge(1), le(10000)), "An integer in [1, 10000]", int)
def __init__(
self,
role,
train_instance_count,
train_instance_type,
num_samples_per_tree=None,
num_trees=None,
eval_metrics=None,
**kwargs
):
"""RandomCutForest is :class:`Estimator` used for anomaly detection.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
serialized data to be stored in S3. There is an utility
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
that can be used to upload data to S3 and creates
:class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
the `fit` call.
To learn more about the Amazon protobuf Record class and how to
prepare bulk data in this format, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, deploy returns a
:class:`~sagemaker.amazon.ntm.RandomCutForestPredictor` object that can
be used for inference calls using the trained model hosted in the
SageMaker Endpoint.
RandomCutForest Estimators can be configured by setting
hyperparameters. The available hyperparameters for RandomCutForest are
documented below.
For further information on the AWS Random Cut Forest algorithm,
please consult AWS technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_count (int): Number of Amazon EC2 instances to use
for training.
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.c4.xlarge'.
num_samples_per_tree (int): Optional. The number of samples used to
build each tree in the forest. The total number of samples drawn
from the train dataset is num_trees * num_samples_per_tree.
num_trees (int): Optional. The number of trees used in the forest.
eval_metrics (list): Optional. JSON list of metrics types to be used
for reporting the score for the model. Allowed values are
"accuracy", "precision_recall_fscore": positive and negative
precision, recall, and f1 scores. If test data is provided, the
score shall be reported in terms of all requested metrics.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
super(RandomCutForest, self).__init__(
role, train_instance_count, train_instance_type, **kwargs
)
self.num_samples_per_tree = num_samples_per_tree
self.num_trees = num_trees
self.eval_metrics = eval_metrics
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Return a :class:`~sagemaker.amazon.RandomCutForestModel` referencing
the latest s3 model data produced by this Estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
the model. Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the RandomCutForestModel constructor.
"""
return RandomCutForestModel(
self.model_data,
self.role,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
def _prepare_for_training(self, records, mini_batch_size=None, job_name=None):
"""
Args:
records:
mini_batch_size:
job_name:
"""
if mini_batch_size is None:
mini_batch_size = self.MINI_BATCH_SIZE
elif mini_batch_size != self.MINI_BATCH_SIZE:
raise ValueError(
"Random Cut Forest uses a fixed mini_batch_size of {}".format(self.MINI_BATCH_SIZE)
)
super(RandomCutForest, self)._prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
class RandomCutForestPredictor(Predictor):
"""Assigns an anomaly score to each of the datapoints provided.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain the same number of columns as the feature-dimension of the data used
to fit the model this Predictor performs inference on.
:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
the input. Each row's score is stored in the key ``score`` of the
``Record.label`` field.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(RandomCutForestPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
)
class RandomCutForestModel(Model):
"""Reference RandomCutForest s3 model data. Calling
:meth:`~sagemaker.model.Model.deploy` creates an Endpoint and returns a
Predictor that calculates anomaly scores for datapoints.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(RandomCutForest.repo_name, RandomCutForest.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, RandomCutForest.repo_name), repo
)
super(RandomCutForestModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=RandomCutForestPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)