forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathntm.py
258 lines (232 loc) · 10.9 KB
/
ntm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, le, isin
from sagemaker.predictor import Predictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class NTM(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "ntm"
repo_version = 1
num_topics = hp("num_topics", (ge(2), le(1000)), "An integer in [2, 1000]", int)
encoder_layers = hp(
name="encoder_layers",
validation_message="A comma separated list of " "positive integers",
data_type=list,
)
epochs = hp("epochs", (ge(1), le(100)), "An integer in [1, 100]", int)
encoder_layers_activation = hp(
"encoder_layers_activation",
isin("sigmoid", "tanh", "relu"),
'One of "sigmoid", "tanh" or "relu"',
str,
)
optimizer = hp(
"optimizer",
isin("adagrad", "adam", "rmsprop", "sgd", "adadelta"),
'One of "adagrad", "adam", "rmsprop", "sgd" and "adadelta"',
str,
)
tolerance = hp("tolerance", (ge(1e-6), le(0.1)), "A float in [1e-6, 0.1]", float)
num_patience_epochs = hp("num_patience_epochs", (ge(1), le(10)), "An integer in [1, 10]", int)
batch_norm = hp(name="batch_norm", validation_message="Value must be a boolean", data_type=bool)
rescale_gradient = hp("rescale_gradient", (ge(1e-3), le(1.0)), "A float in [1e-3, 1.0]", float)
clip_gradient = hp("clip_gradient", ge(1e-3), "A float greater equal to 1e-3", float)
weight_decay = hp("weight_decay", (ge(0.0), le(1.0)), "A float in [0.0, 1.0]", float)
learning_rate = hp("learning_rate", (ge(1e-6), le(1.0)), "A float in [1e-6, 1.0]", float)
def __init__(
self,
role,
train_instance_count,
train_instance_type,
num_topics,
encoder_layers=None,
epochs=None,
encoder_layers_activation=None,
optimizer=None,
tolerance=None,
num_patience_epochs=None,
batch_norm=None,
rescale_gradient=None,
clip_gradient=None,
weight_decay=None,
learning_rate=None,
**kwargs
):
"""Neural Topic Model (NTM) is :class:`Estimator` used for unsupervised
learning.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
serialized data to be stored in S3. There is an utility
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
that can be used to upload data to S3 and creates
:class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
the `fit` call.
To learn more about the Amazon protobuf Record class and how to
prepare bulk data in this format, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, deploy returns a
:class:`~sagemaker.amazon.ntm.NTMPredictor` object that can be used for
inference calls using the trained model hosted in the SageMaker
Endpoint.
NTM Estimators can be configured by setting hyperparameters. The
available hyperparameters for NTM are documented below.
For further information on the AWS NTM algorithm, please consult AWS
technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/ntm.html
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_count:
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.c4.xlarge'.
num_topics (int): Required. The number of topics for NTM to find
within the data.
encoder_layers (list): Optional. Represents number of layers in the
encoder and the output size of each layer.
epochs (int): Optional. Maximum number of passes over the training
data.
encoder_layers_activation (str): Optional. Activation function to
use in the encoder layers.
optimizer (str): Optional. Optimizer to use for training.
tolerance (float): Optional. Maximum relative change in the loss
function within the last num_patience_epochs number of epochs
below which early stopping is triggered.
num_patience_epochs (int): Optional. Number of successive epochs
over which early stopping criterion is evaluated.
batch_norm (bool): Optional. Whether to use batch normalization
during training.
rescale_gradient (float): Optional. Rescale factor for gradient.
clip_gradient (float): Optional. Maximum magnitude for each gradient
component.
weight_decay (float): Optional. Weight decay coefficient. Adds L2
regularization.
learning_rate (float): Optional. Learning rate for the optimizer.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
super(NTM, self).__init__(role, train_instance_count, train_instance_type, **kwargs)
self.num_topics = num_topics
self.encoder_layers = encoder_layers
self.epochs = epochs
self.encoder_layers_activation = encoder_layers_activation
self.optimizer = optimizer
self.tolerance = tolerance
self.num_patience_epochs = num_patience_epochs
self.batch_norm = batch_norm
self.rescale_gradient = rescale_gradient
self.clip_gradient = clip_gradient
self.weight_decay = weight_decay
self.learning_rate = learning_rate
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Return a :class:`~sagemaker.amazon.NTMModel` referencing the latest
s3 model data produced by this Estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
the model. Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the NTMModel constructor.
"""
return NTMModel(
self.model_data,
self.role,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
def _prepare_for_training( # pylint: disable=signature-differs
self, records, mini_batch_size, job_name=None
):
"""
Args:
records:
mini_batch_size:
job_name:
"""
if mini_batch_size is not None and (mini_batch_size < 1 or mini_batch_size > 10000):
raise ValueError("mini_batch_size must be in [1, 10000]")
super(NTM, self)._prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
class NTMPredictor(Predictor):
"""Transforms input vectors to lower-dimesional representations.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain the same number of columns as the feature-dimension of the data used
to fit the model this Predictor performs inference on.
:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
the input ``ndarray``. The lower dimension vector result is stored in the
``projection`` key of the ``Record.label`` field.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(NTMPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
)
class NTMModel(Model):
"""Reference NTM s3 model data. Calling
:meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return a
Predictor that transforms vectors to a lower-dimensional representation.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(NTM.repo_name, NTM.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, NTM.repo_name), repo
)
super(NTMModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=NTMPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)