forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlda.py
228 lines (200 loc) · 9.38 KB
/
lda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt
from sagemaker.predictor import Predictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class LDA(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "lda"
repo_version = 1
num_topics = hp("num_topics", gt(0), "An integer greater than zero", int)
alpha0 = hp("alpha0", gt(0), "A positive float", float)
max_restarts = hp("max_restarts", gt(0), "An integer greater than zero", int)
max_iterations = hp("max_iterations", gt(0), "An integer greater than zero", int)
tol = hp("tol", gt(0), "A positive float", float)
def __init__(
self,
role,
train_instance_type,
num_topics,
alpha0=None,
max_restarts=None,
max_iterations=None,
tol=None,
**kwargs
):
"""Latent Dirichlet Allocation (LDA) is :class:`Estimator` used for
unsupervised learning.
Amazon SageMaker Latent Dirichlet Allocation is an unsupervised
learning algorithm that attempts to describe a set of observations as a
mixture of distinct categories. LDA is most commonly used to discover a
user-specified number of topics shared by documents within a text
corpus. Here each observation is a document, the features are the
presence (or occurrence count) of each word, and the categories are the
topics.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
serialized data to be stored in S3. There is an utility
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
that can be used to upload data to S3 and creates
:class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
the `fit` call.
To learn more about the Amazon protobuf Record class and how to
prepare bulk data in this format, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, deploy returns a
:class:`~sagemaker.amazon.lda.LDAPredictor` object that can be used for
inference calls using the trained model hosted in the SageMaker
Endpoint.
LDA Estimators can be configured by setting hyperparameters. The
available hyperparameters for LDA are documented below.
For further information on the AWS LDA algorithm, please consult AWS
technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/lda.html
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.c4.xlarge'.
num_topics (int): The number of topics for LDA to find within the
data.
alpha0 (float): Optional. Initial guess for the concentration
parameter
max_restarts (int): Optional. The number of restarts to perform
during the Alternating Least Squares (ALS) spectral
decomposition phase of the algorithm.
max_iterations (int): Optional. The maximum number of iterations to
perform during the ALS phase of the algorithm.
tol (float): Optional. Target error tolerance for the ALS phase of
the algorithm.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
# this algorithm only supports single instance training
if kwargs.pop("train_instance_count", 1) != 1:
print(
"LDA only supports single instance training. Defaulting to 1 {}.".format(
train_instance_type
)
)
super(LDA, self).__init__(role, 1, train_instance_type, **kwargs)
self.num_topics = num_topics
self.alpha0 = alpha0
self.max_restarts = max_restarts
self.max_iterations = max_iterations
self.tol = tol
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Return a :class:`~sagemaker.amazon.LDAModel` referencing the latest
s3 model data produced by this Estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for
VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the LDAModel constructor.
"""
return LDAModel(
self.model_data,
self.role,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
def _prepare_for_training( # pylint: disable=signature-differs
self, records, mini_batch_size, job_name=None
):
# mini_batch_size is required, prevent explicit calls with None
"""
Args:
records:
mini_batch_size:
job_name:
"""
if mini_batch_size is None:
raise ValueError("mini_batch_size must be set")
super(LDA, self)._prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
class LDAPredictor(Predictor):
"""Transforms input vectors to lower-dimesional representations.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain the same number of columns as the feature-dimension of the data used
to fit the model this Predictor performs inference on.
:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
the input ``ndarray``. The lower dimension vector result is stored in the
``projection`` key of the ``Record.label`` field.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(LDAPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
)
class LDAModel(Model):
"""Reference LDA s3 model data. Calling
:meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return a
Predictor that transforms vectors to a lower-dimensional representation.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(LDA.repo_name, LDA.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, LDA.repo_name), repo
)
super(LDAModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=LDAPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)