forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
254 lines (229 loc) · 10.9 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt, isin, ge, le
from sagemaker.predictor import Predictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class KMeans(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "kmeans"
repo_version = 1
k = hp("k", gt(1), "An integer greater-than 1", int)
init_method = hp("init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str)
max_iterations = hp("local_lloyd_max_iter", gt(0), "An integer greater-than 0", int)
tol = hp("local_lloyd_tol", (ge(0), le(1)), "An float in [0, 1]", float)
num_trials = hp("local_lloyd_num_trials", gt(0), "An integer greater-than 0", int)
local_init_method = hp(
"local_lloyd_init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str
)
half_life_time_size = hp(
"half_life_time_size", ge(0), "An integer greater-than-or-equal-to 0", int
)
epochs = hp("epochs", gt(0), "An integer greater-than 0", int)
center_factor = hp("extra_center_factor", gt(0), "An integer greater-than 0", int)
eval_metrics = hp(
name="eval_metrics",
validation_message='A comma separated list of "msd" or "ssd"',
data_type=list,
)
def __init__(
self,
role,
train_instance_count,
train_instance_type,
k,
init_method=None,
max_iterations=None,
tol=None,
num_trials=None,
local_init_method=None,
half_life_time_size=None,
epochs=None,
center_factor=None,
eval_metrics=None,
**kwargs
):
"""A k-means clustering
:class:`~sagemaker.amazon.AmazonAlgorithmEstimatorBase`. Finds k
clusters of data in an unlabeled dataset.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit_ndarray`
or
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
The former allows a KMeans model to be fit on a 2-dimensional numpy
array. The latter requires Amazon
:class:`~sagemaker.amazon.record_pb2.Record` protobuf serialized data to
be stored in S3.
To learn more about the Amazon protobuf Record class and how to
prepare bulk data in this format, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html.
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, ``deploy`` returns a
:class:`~sagemaker.amazon.kmeans.KMeansPredictor` object that can be
used to k-means cluster assignments, using the trained k-means model
hosted in the SageMaker Endpoint.
KMeans Estimators can be configured by setting hyperparameters. The
available hyperparameters for KMeans are documented below. For further
information on the AWS KMeans algorithm, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html.
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_count (int): Number of Amazon EC2 instances to use
for training.
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.c4.xlarge'.
k (int): The number of clusters to produce.
init_method (str): How to initialize cluster locations. One of
'random' or 'kmeans++'.
max_iterations (int): Maximum iterations for Lloyds EM procedure in
the local kmeans used in finalize stage.
tol (float): Tolerance for change in ssd for early stopping in local
kmeans.
num_trials (int): Local version is run multiple times and the one
with the best loss is chosen. This determines how many times.
local_init_method (str): Initialization method for local version.
One of 'random', 'kmeans++'
half_life_time_size (int): The points can have a decayed weight.
When a point is observed its weight, with regard to the
computation of the cluster mean is 1. This weight will decay
exponentially as we observe more points. The exponent
coefficient is chosen such that after observing
``half_life_time_size`` points after the mentioned point, its
weight will become 1/2. If set to 0, there will be no decay.
epochs (int): Number of passes done over the training data.
center_factor (int): The algorithm will create
``num_clusters * extra_center_factor`` as it runs and reduce the
number of centers to ``k`` when finalizing
eval_metrics (list): JSON list of metrics types to be used for
reporting the score for the model. Allowed values are "msd"
Means Square Error, "ssd": Sum of square distance. If test data
is provided, the score shall be reported in terms of all
requested metrics.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
super(KMeans, self).__init__(role, train_instance_count, train_instance_type, **kwargs)
self.k = k
self.init_method = init_method
self.max_iterations = max_iterations
self.tol = tol
self.num_trials = num_trials
self.local_init_method = local_init_method
self.half_life_time_size = half_life_time_size
self.epochs = epochs
self.center_factor = center_factor
self.eval_metrics = eval_metrics
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Return a :class:`~sagemaker.amazon.kmeans.KMeansModel` referencing
the latest s3 model data produced by this Estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for
VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the KMeansModel constructor.
"""
return KMeansModel(
self.model_data,
self.role,
self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
def _prepare_for_training(self, records, mini_batch_size=5000, job_name=None):
"""
Args:
records:
mini_batch_size:
job_name:
"""
super(KMeans, self)._prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
def hyperparameters(self):
"""Return the SageMaker hyperparameters for training this KMeans
Estimator
"""
hp_dict = dict(force_dense="True") # KMeans requires this hp to fit on Record objects
hp_dict.update(super(KMeans, self).hyperparameters())
return hp_dict
class KMeansPredictor(Predictor):
"""Assigns input vectors to their closest cluster in a KMeans model.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain the same number of columns as the feature-dimension of the data used
to fit the model this Predictor performs inference on.
``predict()`` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
the input ``ndarray``. The nearest cluster is stored in the
``closest_cluster`` key of the ``Record.label`` field.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(KMeansPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
)
class KMeansModel(Model):
"""Reference KMeans s3 model data. Calling
:meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return a
Predictor to performs k-means cluster assignment.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(KMeans.repo_name, KMeans.repo_version)
image_uri = "{}/{}".format(registry(sagemaker_session.boto_session.region_name), repo)
super(KMeansModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=KMeansPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)