forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipinsights.py
232 lines (207 loc) · 9.89 KB
/
ipinsights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import ge, le
from sagemaker.predictor import Predictor, csv_serializer, json_deserializer
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class IPInsights(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "ipinsights"
repo_version = 1
MINI_BATCH_SIZE = 10000
num_entity_vectors = hp(
"num_entity_vectors", (ge(1), le(250000000)), "An integer in [1, 250000000]", int
)
vector_dim = hp("vector_dim", (ge(4), le(4096)), "An integer in [4, 4096]", int)
batch_metrics_publish_interval = hp(
"batch_metrics_publish_interval", (ge(1)), "An integer greater than 0", int
)
epochs = hp("epochs", (ge(1)), "An integer greater than 0", int)
learning_rate = hp("learning_rate", (ge(1e-6), le(10.0)), "A float in [1e-6, 10.0]", float)
num_ip_encoder_layers = hp(
"num_ip_encoder_layers", (ge(0), le(100)), "An integer in [0, 100]", int
)
random_negative_sampling_rate = hp(
"random_negative_sampling_rate", (ge(0), le(500)), "An integer in [0, 500]", int
)
shuffled_negative_sampling_rate = hp(
"shuffled_negative_sampling_rate", (ge(0), le(500)), "An integer in [0, 500]", int
)
weight_decay = hp("weight_decay", (ge(0.0), le(10.0)), "A float in [0.0, 10.0]", float)
def __init__(
self,
role,
train_instance_count,
train_instance_type,
num_entity_vectors,
vector_dim,
batch_metrics_publish_interval=None,
epochs=None,
learning_rate=None,
num_ip_encoder_layers=None,
random_negative_sampling_rate=None,
shuffled_negative_sampling_rate=None,
weight_decay=None,
**kwargs
):
"""This estimator is for IP Insights, an unsupervised algorithm that
learns usage patterns of IP addresses.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
It requires CSV data to be stored in S3.
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, deploy returns a
:class:`~sagemaker.amazon.IPInsightPredictor` object that can be used
for inference calls using the trained model hosted in the SageMaker
Endpoint.
IPInsights Estimators can be configured by setting hyperparamters.
The available hyperparamters are documented below.
For further information on the AWS IPInsights algorithm, please
consult AWS technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/ip-insights-hyperparameters.html
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_count (int): Number of Amazon EC2 instances to use
for training.
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.m5.xlarge'.
num_entity_vectors (int): Required. The number of embeddings to
train for entities accessing online resources. We recommend 2x
the total number of unique entity IDs.
vector_dim (int): Required. The size of the embedding vectors for
both entity and IP addresses.
batch_metrics_publish_interval (int): Optional. The period at which
to publish metrics (batches).
epochs (int): Optional. Maximum number of passes over the training
data.
learning_rate (float): Optional. Learning rate for the optimizer.
num_ip_encoder_layers (int): Optional. The number of fully-connected
layers to encode IP address embedding.
random_negative_sampling_rate (int): Optional. The ratio of random
negative samples to draw during training. Random negative
samples are randomly drawn IPv4 addresses.
shuffled_negative_sampling_rate (int): Optional. The ratio of
shuffled negative samples to draw during training. Shuffled
negative samples are IP addresses picked from within a batch.
weight_decay (float): Optional. Weight decay coefficient. Adds L2
regularization.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
super(IPInsights, self).__init__(role, train_instance_count, train_instance_type, **kwargs)
self.num_entity_vectors = num_entity_vectors
self.vector_dim = vector_dim
self.batch_metrics_publish_interval = batch_metrics_publish_interval
self.epochs = epochs
self.learning_rate = learning_rate
self.num_ip_encoder_layers = num_ip_encoder_layers
self.random_negative_sampling_rate = random_negative_sampling_rate
self.shuffled_negative_sampling_rate = shuffled_negative_sampling_rate
self.weight_decay = weight_decay
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Create a model for the latest s3 model produced by this estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
the model.
Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the IPInsightsModel constructor.
Returns:
:class:`~sagemaker.amazon.IPInsightsModel`: references the latest s3 model
data produced by this estimator.
"""
return IPInsightsModel(
self.model_data,
self.role,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
def _prepare_for_training(self, records, mini_batch_size=None, job_name=None):
"""
Args:
records:
mini_batch_size:
job_name:
"""
if mini_batch_size is not None and (mini_batch_size < 1 or mini_batch_size > 500000):
raise ValueError("mini_batch_size must be in [1, 500000]")
super(IPInsights, self)._prepare_for_training(
records, mini_batch_size=mini_batch_size, job_name=job_name
)
class IPInsightsPredictor(Predictor):
"""Returns dot product of entity and IP address embeddings as a score for
compatibility.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain two columns. The first column should contain the entity ID. The
second column should contain the IPv4 address in dot notation.
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(IPInsightsPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=csv_serializer,
deserializer=json_deserializer,
)
class IPInsightsModel(Model):
"""Reference IPInsights s3 model data. Calling
:meth:`~sagemaker.model.Model.deploy` creates an Endpoint and returns a
Predictor that calculates anomaly scores for data points.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(IPInsights.repo_name, IPInsights.repo_version)
image_uri = "{}/{}".format(
registry(sagemaker_session.boto_session.region_name, IPInsights.repo_name), repo
)
super(IPInsightsModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=IPInsightsPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)