forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfactorization_machines.py
323 lines (297 loc) · 14.7 KB
/
factorization_machines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry
from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa
from sagemaker.amazon.validation import gt, isin, ge
from sagemaker.predictor import Predictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT
class FactorizationMachines(AmazonAlgorithmEstimatorBase):
"""Placeholder docstring"""
repo_name = "factorization-machines"
repo_version = 1
num_factors = hp("num_factors", gt(0), "An integer greater than zero", int)
predictor_type = hp(
"predictor_type",
isin("binary_classifier", "regressor"),
'Value "binary_classifier" or "regressor"',
str,
)
epochs = hp("epochs", gt(0), "An integer greater than 0", int)
clip_gradient = hp("clip_gradient", (), "A float value", float)
eps = hp("eps", (), "A float value", float)
rescale_grad = hp("rescale_grad", (), "A float value", float)
bias_lr = hp("bias_lr", ge(0), "A non-negative float", float)
linear_lr = hp("linear_lr", ge(0), "A non-negative float", float)
factors_lr = hp("factors_lr", ge(0), "A non-negative float", float)
bias_wd = hp("bias_wd", ge(0), "A non-negative float", float)
linear_wd = hp("linear_wd", ge(0), "A non-negative float", float)
factors_wd = hp("factors_wd", ge(0), "A non-negative float", float)
bias_init_method = hp(
"bias_init_method",
isin("normal", "uniform", "constant"),
'Value "normal", "uniform" or "constant"',
str,
)
bias_init_scale = hp("bias_init_scale", ge(0), "A non-negative float", float)
bias_init_sigma = hp("bias_init_sigma", ge(0), "A non-negative float", float)
bias_init_value = hp("bias_init_value", (), "A float value", float)
linear_init_method = hp(
"linear_init_method",
isin("normal", "uniform", "constant"),
'Value "normal", "uniform" or "constant"',
str,
)
linear_init_scale = hp("linear_init_scale", ge(0), "A non-negative float", float)
linear_init_sigma = hp("linear_init_sigma", ge(0), "A non-negative float", float)
linear_init_value = hp("linear_init_value", (), "A float value", float)
factors_init_method = hp(
"factors_init_method",
isin("normal", "uniform", "constant"),
'Value "normal", "uniform" or "constant"',
str,
)
factors_init_scale = hp("factors_init_scale", ge(0), "A non-negative float", float)
factors_init_sigma = hp("factors_init_sigma", ge(0), "A non-negative float", float)
factors_init_value = hp("factors_init_value", (), "A float value", float)
def __init__(
self,
role,
train_instance_count,
train_instance_type,
num_factors,
predictor_type,
epochs=None,
clip_gradient=None,
eps=None,
rescale_grad=None,
bias_lr=None,
linear_lr=None,
factors_lr=None,
bias_wd=None,
linear_wd=None,
factors_wd=None,
bias_init_method=None,
bias_init_scale=None,
bias_init_sigma=None,
bias_init_value=None,
linear_init_method=None,
linear_init_scale=None,
linear_init_sigma=None,
linear_init_value=None,
factors_init_method=None,
factors_init_scale=None,
factors_init_sigma=None,
factors_init_value=None,
**kwargs
):
"""Factorization Machines is :class:`Estimator` for general-purpose
supervised learning.
Amazon SageMaker Factorization Machines is a general-purpose
supervised learning algorithm that you can use for both classification
and regression tasks. It is an extension of a linear model that is
designed to parsimoniously capture interactions between features within
high dimensional sparse datasets.
This Estimator may be fit via calls to
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`.
It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf
serialized data to be stored in S3. There is an utility
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set`
that can be used to upload data to S3 and creates
:class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to
the `fit` call.
To learn more about the Amazon protobuf Record class and how to
prepare bulk data in this format, please consult AWS technical
documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
After this Estimator is fit, model data is stored in S3. The model
may be deployed to an Amazon SageMaker Endpoint by invoking
:meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as
deploying an Endpoint, deploy returns a
:class:`~sagemaker.amazon.pca.FactorizationMachinesPredictor` object
that can be used for inference calls using the trained model hosted in
the SageMaker Endpoint.
FactorizationMachines Estimators can be configured by setting
hyperparameters. The available hyperparameters for FactorizationMachines
are documented below.
For further information on the AWS FactorizationMachines algorithm,
please consult AWS technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html
Args:
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if accessing AWS resource.
train_instance_count (int): Number of Amazon EC2 instances to use
for training.
train_instance_type (str): Type of EC2 instance to use for training,
for example, 'ml.c4.xlarge'.
num_factors (int): Dimensionality of factorization.
predictor_type (str): Type of predictor 'binary_classifier' or
'regressor'.
epochs (int): Number of training epochs to run.
clip_gradient (float): Optimizer parameter. Clip the gradient by
projecting onto the box [-clip_gradient, +clip_gradient]
eps (float): Optimizer parameter. Small value to avoid division by
0.
rescale_grad (float): Optimizer parameter. If set, multiplies the
gradient with rescale_grad before updating. Often choose to be
1.0/batch_size.
bias_lr (float): Non-negative learning rate for the bias term.
linear_lr (float): Non-negative learning rate for linear terms.
factors_lr (float): Noon-negative learning rate for factorization
terms.
bias_wd (float): Non-negative weight decay for the bias term.
linear_wd (float): Non-negative weight decay for linear terms.
factors_wd (float): Non-negative weight decay for factorization
terms.
bias_init_method (string): Initialization method for the bias term:
'normal', 'uniform' or 'constant'.
bias_init_scale (float): Non-negative range for initialization of
the bias term that takes effect when bias_init_method parameter
is 'uniform'
bias_init_sigma (float): Non-negative standard deviation for
initialization of the bias term that takes effect when
bias_init_method parameter is 'normal'.
bias_init_value (float): Initial value of the bias term that takes
effect when bias_init_method parameter is 'constant'.
linear_init_method (string): Initialization method for linear term:
'normal', 'uniform' or 'constant'.
linear_init_scale (float): Non-negative range for initialization of
linear terms that takes effect when linear_init_method parameter
is 'uniform'.
linear_init_sigma (float): Non-negative standard deviation for
initialization of linear terms that takes effect when
linear_init_method parameter is 'normal'.
linear_init_value (float): Initial value of linear terms that takes
effect when linear_init_method parameter is 'constant'.
factors_init_method (string): Initialization method for
factorization term: 'normal', 'uniform' or 'constant'.
factors_init_scale (float): Non-negative range for initialization of
factorization terms that takes effect when factors_init_method
parameter is 'uniform'.
factors_init_sigma (float): Non-negative standard deviation for
initialization of factorization terms that takes effect when
factors_init_method parameter is 'normal'.
factors_init_value (float): Initial value of factorization terms
that takes effect when factors_init_method parameter is
'constant'.
**kwargs: base class keyword argument values.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and
:class:`~sagemaker.estimator.EstimatorBase`.
"""
super(FactorizationMachines, self).__init__(
role, train_instance_count, train_instance_type, **kwargs
)
self.num_factors = num_factors
self.predictor_type = predictor_type
self.epochs = epochs
self.clip_gradient = clip_gradient
self.eps = eps
self.rescale_grad = rescale_grad
self.bias_lr = bias_lr
self.linear_lr = linear_lr
self.factors_lr = factors_lr
self.bias_wd = bias_wd
self.linear_wd = linear_wd
self.factors_wd = factors_wd
self.bias_init_method = bias_init_method
self.bias_init_scale = bias_init_scale
self.bias_init_sigma = bias_init_sigma
self.bias_init_value = bias_init_value
self.linear_init_method = linear_init_method
self.linear_init_scale = linear_init_scale
self.linear_init_sigma = linear_init_sigma
self.linear_init_value = linear_init_value
self.factors_init_method = factors_init_method
self.factors_init_scale = factors_init_scale
self.factors_init_sigma = factors_init_sigma
self.factors_init_value = factors_init_value
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
"""Return a :class:`~sagemaker.amazon.FactorizationMachinesModel`
referencing the latest s3 model data produced by this Estimator.
Args:
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
the model. Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
**kwargs: Additional kwargs passed to the FactorizationMachinesModel constructor.
"""
return FactorizationMachinesModel(
self.model_data,
self.role,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
**kwargs
)
class FactorizationMachinesPredictor(Predictor):
"""Performs binary-classification or regression prediction from input
vectors.
The implementation of
:meth:`~sagemaker.predictor.Predictor.predict` in this
`Predictor` requires a numpy ``ndarray`` as input. The array should
contain the same number of columns as the feature-dimension of the data used
to fit the model this Predictor performs inference on.
:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
the input ``ndarray``. The prediction is stored in the ``"score"`` key of
the ``Record.label`` field. Please refer to the formats details described:
https://docs.aws.amazon.com/sagemaker/latest/dg/fm-in-formats.html
"""
def __init__(self, endpoint_name, sagemaker_session=None):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
requests are sent.
sagemaker_session (sagemaker.session.Session): A SageMaker Session
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
"""
super(FactorizationMachinesPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=numpy_to_record_serializer(),
deserializer=record_deserializer(),
)
class FactorizationMachinesModel(Model):
"""Reference S3 model data created by FactorizationMachines estimator.
Calling :meth:`~sagemaker.model.Model.deploy` creates an Endpoint and
returns :class:`FactorizationMachinesPredictor`.
"""
def __init__(self, model_data, role, sagemaker_session=None, **kwargs):
"""
Args:
model_data:
role:
sagemaker_session:
**kwargs:
"""
sagemaker_session = sagemaker_session or Session()
repo = "{}:{}".format(FactorizationMachines.repo_name, FactorizationMachines.repo_version)
image_uri = "{}/{}".format(registry(sagemaker_session.boto_session.region_name), repo)
super(FactorizationMachinesModel, self).__init__(
image_uri,
model_data,
role,
predictor_cls=FactorizationMachinesPredictor,
sagemaker_session=sagemaker_session,
**kwargs
)