|
| 1 | +/* |
| 2 | +Copyright 2025 The Kubernetes Authors. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +*/ |
| 16 | + |
| 17 | +package metrics |
| 18 | + |
| 19 | +import ( |
| 20 | + "context" |
| 21 | + "sync" |
| 22 | + "time" |
| 23 | + |
| 24 | + compbasemetrics "k8s.io/component-base/metrics" |
| 25 | + "k8s.io/component-base/metrics/legacyregistry" |
| 26 | + "sigs.k8s.io/controller-runtime/pkg/log" |
| 27 | + logutil "sigs.k8s.io/gateway-api-inference-extension/pkg/epp/util/logging" |
| 28 | +) |
| 29 | + |
| 30 | +const ( |
| 31 | + InferenceModelComponent = "inference_model" |
| 32 | + InferencePoolComponent = "inference_pool" |
| 33 | +) |
| 34 | + |
| 35 | +var ( |
| 36 | + // Inference Model Metrics |
| 37 | + requestCounter = compbasemetrics.NewCounterVec( |
| 38 | + &compbasemetrics.CounterOpts{ |
| 39 | + Subsystem: InferenceModelComponent, |
| 40 | + Name: "request_total", |
| 41 | + Help: "Counter of inference model requests broken out for each model and target model.", |
| 42 | + StabilityLevel: compbasemetrics.ALPHA, |
| 43 | + }, |
| 44 | + []string{"model_name", "target_model_name"}, |
| 45 | + ) |
| 46 | + |
| 47 | + requestErrCounter = compbasemetrics.NewCounterVec( |
| 48 | + &compbasemetrics.CounterOpts{ |
| 49 | + Subsystem: InferenceModelComponent, |
| 50 | + Name: "request_error_total", |
| 51 | + Help: "Counter of inference model requests errors broken out for each model and target model.", |
| 52 | + StabilityLevel: compbasemetrics.ALPHA, |
| 53 | + }, |
| 54 | + []string{"model_name", "target_model_name", "error_code"}, |
| 55 | + ) |
| 56 | + |
| 57 | + requestLatencies = compbasemetrics.NewHistogramVec( |
| 58 | + &compbasemetrics.HistogramOpts{ |
| 59 | + Subsystem: InferenceModelComponent, |
| 60 | + Name: "request_duration_seconds", |
| 61 | + Help: "Inference model response latency distribution in seconds for each model and target model.", |
| 62 | + Buckets: []float64{ |
| 63 | + 0.005, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 2, 3, |
| 64 | + 4, 5, 6, 8, 10, 15, 20, 30, 45, 60, 120, 180, 240, 300, 360, 480, 600, 900, 1200, 1800, 2700, 3600, |
| 65 | + }, |
| 66 | + StabilityLevel: compbasemetrics.ALPHA, |
| 67 | + }, |
| 68 | + []string{"model_name", "target_model_name"}, |
| 69 | + ) |
| 70 | + |
| 71 | + requestSizes = compbasemetrics.NewHistogramVec( |
| 72 | + &compbasemetrics.HistogramOpts{ |
| 73 | + Subsystem: InferenceModelComponent, |
| 74 | + Name: "request_sizes", |
| 75 | + Help: "Inference model requests size distribution in bytes for each model and target model.", |
| 76 | + // Use buckets ranging from 1000 bytes (1KB) to 10^9 bytes (1GB). |
| 77 | + Buckets: []float64{ |
| 78 | + 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, // More fine-grained up to 64KB |
| 79 | + 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, // Exponential up to 8MB |
| 80 | + 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, // Exponential up to 1GB |
| 81 | + }, |
| 82 | + StabilityLevel: compbasemetrics.ALPHA, |
| 83 | + }, |
| 84 | + []string{"model_name", "target_model_name"}, |
| 85 | + ) |
| 86 | + |
| 87 | + responseSizes = compbasemetrics.NewHistogramVec( |
| 88 | + &compbasemetrics.HistogramOpts{ |
| 89 | + Subsystem: InferenceModelComponent, |
| 90 | + Name: "response_sizes", |
| 91 | + Help: "Inference model responses size distribution in bytes for each model and target model.", |
| 92 | + // Most models have a response token < 8192 tokens. Each token, in average, has 4 characters. |
| 93 | + // 8192 * 4 = 32768. |
| 94 | + Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536}, |
| 95 | + StabilityLevel: compbasemetrics.ALPHA, |
| 96 | + }, |
| 97 | + []string{"model_name", "target_model_name"}, |
| 98 | + ) |
| 99 | + |
| 100 | + inputTokens = compbasemetrics.NewHistogramVec( |
| 101 | + &compbasemetrics.HistogramOpts{ |
| 102 | + Subsystem: InferenceModelComponent, |
| 103 | + Name: "input_tokens", |
| 104 | + Help: "Inference model input token count distribution for requests in each model.", |
| 105 | + // Most models have a input context window less than 1 million tokens. |
| 106 | + Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536, 131072, 262144, 524288, 1048576}, |
| 107 | + StabilityLevel: compbasemetrics.ALPHA, |
| 108 | + }, |
| 109 | + []string{"model_name", "target_model_name"}, |
| 110 | + ) |
| 111 | + |
| 112 | + outputTokens = compbasemetrics.NewHistogramVec( |
| 113 | + &compbasemetrics.HistogramOpts{ |
| 114 | + Subsystem: InferenceModelComponent, |
| 115 | + Name: "output_tokens", |
| 116 | + Help: "Inference model output token count distribution for requests in each model.", |
| 117 | + // Most models generates output less than 8192 tokens. |
| 118 | + Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}, |
| 119 | + StabilityLevel: compbasemetrics.ALPHA, |
| 120 | + }, |
| 121 | + []string{"model_name", "target_model_name"}, |
| 122 | + ) |
| 123 | + |
| 124 | + // Inference Pool Metrics |
| 125 | + inferencePoolAvgKVCache = compbasemetrics.NewGaugeVec( |
| 126 | + &compbasemetrics.GaugeOpts{ |
| 127 | + Subsystem: InferencePoolComponent, |
| 128 | + Name: "average_kv_cache_utilization", |
| 129 | + Help: "The average kv cache utilization for an inference server pool.", |
| 130 | + StabilityLevel: compbasemetrics.ALPHA, |
| 131 | + }, |
| 132 | + []string{"name"}, |
| 133 | + ) |
| 134 | + |
| 135 | + inferencePoolAvgQueueSize = compbasemetrics.NewGaugeVec( |
| 136 | + &compbasemetrics.GaugeOpts{ |
| 137 | + Subsystem: InferencePoolComponent, |
| 138 | + Name: "average_queue_size", |
| 139 | + Help: "The average number of requests pending in the model server queue.", |
| 140 | + StabilityLevel: compbasemetrics.ALPHA, |
| 141 | + }, |
| 142 | + []string{"name"}, |
| 143 | + ) |
| 144 | +) |
| 145 | + |
| 146 | +var registerMetrics sync.Once |
| 147 | + |
| 148 | +// Register all metrics. |
| 149 | +func Register() { |
| 150 | + registerMetrics.Do(func() { |
| 151 | + legacyregistry.MustRegister(requestCounter) |
| 152 | + legacyregistry.MustRegister(requestErrCounter) |
| 153 | + legacyregistry.MustRegister(requestLatencies) |
| 154 | + legacyregistry.MustRegister(requestSizes) |
| 155 | + legacyregistry.MustRegister(responseSizes) |
| 156 | + legacyregistry.MustRegister(inputTokens) |
| 157 | + legacyregistry.MustRegister(outputTokens) |
| 158 | + |
| 159 | + legacyregistry.MustRegister(inferencePoolAvgKVCache) |
| 160 | + legacyregistry.MustRegister(inferencePoolAvgQueueSize) |
| 161 | + }) |
| 162 | +} |
| 163 | + |
| 164 | +// RecordRequstCounter records the number of requests. |
| 165 | +func RecordRequestCounter(modelName, targetModelName string) { |
| 166 | + requestCounter.WithLabelValues(modelName, targetModelName).Inc() |
| 167 | +} |
| 168 | + |
| 169 | +// RecordRequestErrCounter records the number of error requests. |
| 170 | +func RecordRequestErrCounter(modelName, targetModelName string, code string) { |
| 171 | + if code != "" { |
| 172 | + requestErrCounter.WithLabelValues(modelName, targetModelName, code).Inc() |
| 173 | + } |
| 174 | +} |
| 175 | + |
| 176 | +// RecordRequestSizes records the request sizes. |
| 177 | +func RecordRequestSizes(modelName, targetModelName string, reqSize int) { |
| 178 | + requestSizes.WithLabelValues(modelName, targetModelName).Observe(float64(reqSize)) |
| 179 | +} |
| 180 | + |
| 181 | +// RecordRequestLatencies records duration of request. |
| 182 | +func RecordRequestLatencies(ctx context.Context, modelName, targetModelName string, received time.Time, complete time.Time) bool { |
| 183 | + if !complete.After(received) { |
| 184 | + log.FromContext(ctx).V(logutil.DEFAULT).Error(nil, "Request latency values are invalid", |
| 185 | + "modelName", modelName, "targetModelName", targetModelName, "completeTime", complete, "receivedTime", received) |
| 186 | + return false |
| 187 | + } |
| 188 | + elapsedSeconds := complete.Sub(received).Seconds() |
| 189 | + requestLatencies.WithLabelValues(modelName, targetModelName).Observe(elapsedSeconds) |
| 190 | + return true |
| 191 | +} |
| 192 | + |
| 193 | +// RecordResponseSizes records the response sizes. |
| 194 | +func RecordResponseSizes(modelName, targetModelName string, size int) { |
| 195 | + responseSizes.WithLabelValues(modelName, targetModelName).Observe(float64(size)) |
| 196 | +} |
| 197 | + |
| 198 | +// RecordInputTokens records input tokens count. |
| 199 | +func RecordInputTokens(modelName, targetModelName string, size int) { |
| 200 | + if size > 0 { |
| 201 | + inputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size)) |
| 202 | + } |
| 203 | +} |
| 204 | + |
| 205 | +// RecordOutputTokens records output tokens count. |
| 206 | +func RecordOutputTokens(modelName, targetModelName string, size int) { |
| 207 | + if size > 0 { |
| 208 | + outputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size)) |
| 209 | + } |
| 210 | +} |
| 211 | + |
| 212 | +func RecordInferencePoolAvgKVCache(name string, utilization float64) { |
| 213 | + inferencePoolAvgKVCache.WithLabelValues(name).Set(utilization) |
| 214 | +} |
| 215 | + |
| 216 | +func RecordInferencePoolAvgQueueSize(name string, queueSize float64) { |
| 217 | + inferencePoolAvgQueueSize.WithLabelValues(name).Set(queueSize) |
| 218 | +} |
0 commit comments