@@ -458,18 +458,18 @@ def test_dataframe_categorical_with_nan(observed):
458
458
@pytest .mark .parametrize ("sort" , [True , False ])
459
459
def test_dataframe_categorical_ordered_observed_sort (ordered , observed , sort ):
460
460
# GH 25871: Fix groupby sorting on ordered Categoricals
461
- # Build a dataframe with a Categorical having one unobserved category ('AWOL'),
461
+ # Build a dataframe with cat having one unobserved category ('AWOL'),
462
462
# and a Series with identical values
463
- cat = pd .Categorical (['d' , 'a' , 'b' , 'a' , 'd' , 'b' ],
464
- categories = ['a' , 'b' , 'AWOL' , 'd' ],
463
+ cat = pd .Categorical (['d' , 'a' , 'b' , 'a' , 'd' , 'b' ],
464
+ categories = ['a' , 'b' , 'AWOL' , 'd' ],
465
465
ordered = ordered )
466
466
val = pd .Series (['d' , 'a' , 'b' , 'a' , 'd' , 'b' ])
467
467
df = pd .DataFrame ({'cat' : cat , 'val' : val })
468
468
469
469
# aggregate on the Categorical
470
470
result = (df .groupby ('cat' , observed = observed , sort = sort )['val' ]
471
471
.aggregate ('first' ))
472
-
472
+
473
473
# If ordering works, we expect index labels equal to aggregation results,
474
474
# except for 'observed=False': index contains 'AWOL' and aggregation None
475
475
label = pd .Series (result .index .array , dtype = 'object' )
0 commit comments