Skip to content

Commit ff4df0c

Browse files
kaptajnenKevin D Smith
authored and
Kevin D Smith
committed
DOC: Replaced single backticks with double backticks in several rst files (pandas-dev#36627)
1 parent 149c943 commit ff4df0c

18 files changed

+83
-100
lines changed

.pre-commit-config.yaml

-17
Original file line numberDiff line numberDiff line change
@@ -36,23 +36,6 @@ repos:
3636
- id: rst-backticks
3737
# these exclusions should be removed and the files fixed
3838
exclude: (?x)(
39-
text\.rst|
40-
timeseries\.rst|
41-
visualization\.rst|
42-
missing_data\.rst|
43-
options\.rst|
44-
reshaping\.rst|
45-
scale\.rst|
46-
merging\.rst|
47-
cookbook\.rst|
48-
enhancingperf\.rst|
49-
groupby\.rst|
50-
io\.rst|
51-
overview\.rst|
52-
panel\.rst|
53-
plotting\.rst|
54-
10min\.rst|
55-
basics\.rst|
5639
categorical\.rst|
5740
contributing\.rst|
5841
contributing_docstring\.rst|

doc/source/getting_started/overview.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ Here are just a few of the things that pandas does well:
4040
higher dimensional objects
4141
- Automatic and explicit **data alignment**: objects can be explicitly
4242
aligned to a set of labels, or the user can simply ignore the labels and
43-
let `Series`, `DataFrame`, etc. automatically align the data for you in
43+
let ``Series``, ``DataFrame``, etc. automatically align the data for you in
4444
computations
4545
- Powerful, flexible **group by** functionality to perform
4646
split-apply-combine operations on data sets, for both aggregating and

doc/source/reference/panel.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,4 +7,4 @@ Panel
77
=====
88
.. currentmodule:: pandas
99

10-
`Panel` was removed in 0.25.0. For prior documentation, see the `0.24 documentation <https://pandas.pydata.org/pandas-docs/version/0.24/reference/panel.html>`_
10+
``Panel`` was removed in 0.25.0. For prior documentation, see the `0.24 documentation <https://pandas.pydata.org/pandas-docs/version/0.24/reference/panel.html>`_

doc/source/reference/plotting.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ Plotting
77
========
88
.. currentmodule:: pandas.plotting
99

10-
The following functions are contained in the `pandas.plotting` module.
10+
The following functions are contained in the ``pandas.plotting`` module.
1111

1212
.. autosummary::
1313
:toctree: api/

doc/source/user_guide/10min.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -431,9 +431,9 @@ See more at :ref:`Histogramming and Discretization <basics.discretization>`.
431431
String Methods
432432
~~~~~~~~~~~~~~
433433

434-
Series is equipped with a set of string processing methods in the `str`
434+
Series is equipped with a set of string processing methods in the ``str``
435435
attribute that make it easy to operate on each element of the array, as in the
436-
code snippet below. Note that pattern-matching in `str` generally uses `regular
436+
code snippet below. Note that pattern-matching in ``str`` generally uses `regular
437437
expressions <https://docs.python.org/3/library/re.html>`__ by default (and in
438438
some cases always uses them). See more at :ref:`Vectorized String Methods
439439
<text.string_methods>`.

doc/source/user_guide/basics.rst

+8-8
Original file line numberDiff line numberDiff line change
@@ -1459,7 +1459,7 @@ for altering the ``Series.name`` attribute.
14591459
.. versionadded:: 0.24.0
14601460

14611461
The methods :meth:`DataFrame.rename_axis` and :meth:`Series.rename_axis`
1462-
allow specific names of a `MultiIndex` to be changed (as opposed to the
1462+
allow specific names of a ``MultiIndex`` to be changed (as opposed to the
14631463
labels).
14641464

14651465
.. ipython:: python
@@ -1592,7 +1592,7 @@ index value along with a Series containing the data in each row:
15921592
row
15931593
15941594
All values in ``row``, returned as a Series, are now upcasted
1595-
to floats, also the original integer value in column `x`:
1595+
to floats, also the original integer value in column ``x``:
15961596

15971597
.. ipython:: python
15981598
@@ -1787,8 +1787,8 @@ used to sort a pandas object by its index levels.
17871787
.. versionadded:: 1.1.0
17881788

17891789
Sorting by index also supports a ``key`` parameter that takes a callable
1790-
function to apply to the index being sorted. For `MultiIndex` objects,
1791-
the key is applied per-level to the levels specified by `level`.
1790+
function to apply to the index being sorted. For ``MultiIndex`` objects,
1791+
the key is applied per-level to the levels specified by ``level``.
17921792

17931793
.. ipython:: python
17941794
@@ -1812,8 +1812,8 @@ For information on key sorting by value, see :ref:`value sorting
18121812
By values
18131813
~~~~~~~~~
18141814

1815-
The :meth:`Series.sort_values` method is used to sort a `Series` by its values. The
1816-
:meth:`DataFrame.sort_values` method is used to sort a `DataFrame` by its column or row values.
1815+
The :meth:`Series.sort_values` method is used to sort a ``Series`` by its values. The
1816+
:meth:`DataFrame.sort_values` method is used to sort a ``DataFrame`` by its column or row values.
18171817
The optional ``by`` parameter to :meth:`DataFrame.sort_values` may used to specify one or more columns
18181818
to use to determine the sorted order.
18191819

@@ -1855,8 +1855,8 @@ to apply to the values being sorted.
18551855
s1.sort_values()
18561856
s1.sort_values(key=lambda x: x.str.lower())
18571857
1858-
`key` will be given the :class:`Series` of values and should return a ``Series``
1859-
or array of the same shape with the transformed values. For `DataFrame` objects,
1858+
``key`` will be given the :class:`Series` of values and should return a ``Series``
1859+
or array of the same shape with the transformed values. For ``DataFrame`` objects,
18601860
the key is applied per column, so the key should still expect a Series and return
18611861
a Series, e.g.
18621862

doc/source/user_guide/cookbook.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1270,7 +1270,7 @@ Often it's useful to obtain the lower (or upper) triangular form of a correlatio
12701270
12711271
corr_mat.where(mask)
12721272
1273-
The `method` argument within `DataFrame.corr` can accept a callable in addition to the named correlation types. Here we compute the `distance correlation <https://en.wikipedia.org/wiki/Distance_correlation>`__ matrix for a `DataFrame` object.
1273+
The ``method`` argument within ``DataFrame.corr`` can accept a callable in addition to the named correlation types. Here we compute the ``distance correlation <https://en.wikipedia.org/wiki/Distance_correlation>``__ matrix for a ``DataFrame`` object.
12741274

12751275
.. ipython:: python
12761276

doc/source/user_guide/enhancingperf.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -488,9 +488,9 @@ These operations are supported by :func:`pandas.eval`:
488488
* Attribute access, e.g., ``df.a``
489489
* Subscript expressions, e.g., ``df[0]``
490490
* Simple variable evaluation, e.g., ``pd.eval('df')`` (this is not very useful)
491-
* Math functions: `sin`, `cos`, `exp`, `log`, `expm1`, `log1p`,
492-
`sqrt`, `sinh`, `cosh`, `tanh`, `arcsin`, `arccos`, `arctan`, `arccosh`,
493-
`arcsinh`, `arctanh`, `abs`, `arctan2` and `log10`.
491+
* Math functions: ``sin``, ``cos``, ``exp``, ``log``, ``expm1``, ``log1p``,
492+
``sqrt``, ``sinh``, ``cosh``, ``tanh``, ``arcsin``, ``arccos``, ``arctan``, ``arccosh``,
493+
``arcsinh``, ``arctanh``, ``abs``, ``arctan2`` and ``log10``.
494494

495495
This Python syntax is **not** allowed:
496496

doc/source/user_guide/groupby.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -216,10 +216,10 @@ in case you want to include ``NA`` values in group keys, you could pass ``dropna
216216
217217
.. ipython:: python
218218
219-
# Default `dropna` is set to True, which will exclude NaNs in keys
219+
# Default ``dropna`` is set to True, which will exclude NaNs in keys
220220
df_dropna.groupby(by=["b"], dropna=True).sum()
221221
222-
# In order to allow NaN in keys, set `dropna` to False
222+
# In order to allow NaN in keys, set ``dropna`` to False
223223
df_dropna.groupby(by=["b"], dropna=False).sum()
224224
225225
The default setting of ``dropna`` argument is ``True`` which means ``NA`` are not included in group keys.

0 commit comments

Comments
 (0)