|
1 | 1 | from datetime import timedelta
|
2 | 2 |
|
3 | 3 | import numpy as np
|
4 |
| -import pytest |
5 | 4 |
|
6 | 5 | from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
7 | 6 |
|
@@ -89,16 +88,7 @@ def test_dtypes_gh8722(self, float_string_frame):
|
89 | 88 | result = df.dtypes
|
90 | 89 | tm.assert_series_equal(result, Series({0: np.dtype("int64")}))
|
91 | 90 |
|
92 |
| - def test_singlerow_slice_categoricaldtype_gives_series(self): |
93 |
| - # GH29521 |
94 |
| - df = DataFrame({"x": pd.Categorical("a b c d e".split())}) |
95 |
| - result = df.iloc[0] |
96 |
| - raw_cat = pd.Categorical(["a"], categories=["a", "b", "c", "d", "e"]) |
97 |
| - expected = Series(raw_cat, index=["x"], name=0, dtype="category") |
98 |
| - |
99 |
| - tm.assert_series_equal(result, expected) |
100 |
| - |
101 |
| - def test_timedeltas(self): |
| 91 | + def test_dtypes_timedeltas(self): |
102 | 92 | df = DataFrame(
|
103 | 93 | dict(
|
104 | 94 | A=Series(date_range("2012-1-1", periods=3, freq="D")),
|
@@ -136,95 +126,3 @@ def test_timedeltas(self):
|
136 | 126 | index=list("ABCD"),
|
137 | 127 | )
|
138 | 128 | tm.assert_series_equal(result, expected)
|
139 |
| - |
140 |
| - @pytest.mark.parametrize( |
141 |
| - "input_vals", |
142 |
| - [ |
143 |
| - ([1, 2]), |
144 |
| - (["1", "2"]), |
145 |
| - (list(pd.date_range("1/1/2011", periods=2, freq="H"))), |
146 |
| - (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), |
147 |
| - ([pd.Interval(left=0, right=5)]), |
148 |
| - ], |
149 |
| - ) |
150 |
| - def test_constructor_list_str(self, input_vals, string_dtype): |
151 |
| - # GH 16605 |
152 |
| - # Ensure that data elements are converted to strings when |
153 |
| - # dtype is str, 'str', or 'U' |
154 |
| - |
155 |
| - result = DataFrame({"A": input_vals}, dtype=string_dtype) |
156 |
| - expected = DataFrame({"A": input_vals}).astype({"A": string_dtype}) |
157 |
| - tm.assert_frame_equal(result, expected) |
158 |
| - |
159 |
| - def test_constructor_list_str_na(self, string_dtype): |
160 |
| - |
161 |
| - result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype) |
162 |
| - expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object) |
163 |
| - tm.assert_frame_equal(result, expected) |
164 |
| - |
165 |
| - @pytest.mark.parametrize( |
166 |
| - "data, expected", |
167 |
| - [ |
168 |
| - # empty |
169 |
| - (DataFrame(), True), |
170 |
| - # multi-same |
171 |
| - (DataFrame({"A": [1, 2], "B": [1, 2]}), True), |
172 |
| - # multi-object |
173 |
| - ( |
174 |
| - DataFrame( |
175 |
| - { |
176 |
| - "A": np.array([1, 2], dtype=object), |
177 |
| - "B": np.array(["a", "b"], dtype=object), |
178 |
| - } |
179 |
| - ), |
180 |
| - True, |
181 |
| - ), |
182 |
| - # multi-extension |
183 |
| - ( |
184 |
| - DataFrame( |
185 |
| - {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["a", "b"])} |
186 |
| - ), |
187 |
| - True, |
188 |
| - ), |
189 |
| - # differ types |
190 |
| - (DataFrame({"A": [1, 2], "B": [1.0, 2.0]}), False), |
191 |
| - # differ sizes |
192 |
| - ( |
193 |
| - DataFrame( |
194 |
| - { |
195 |
| - "A": np.array([1, 2], dtype=np.int32), |
196 |
| - "B": np.array([1, 2], dtype=np.int64), |
197 |
| - } |
198 |
| - ), |
199 |
| - False, |
200 |
| - ), |
201 |
| - # multi-extension differ |
202 |
| - ( |
203 |
| - DataFrame( |
204 |
| - {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["b", "c"])} |
205 |
| - ), |
206 |
| - False, |
207 |
| - ), |
208 |
| - ], |
209 |
| - ) |
210 |
| - def test_is_homogeneous_type(self, data, expected): |
211 |
| - assert data._is_homogeneous_type is expected |
212 |
| - |
213 |
| - def test_asarray_homogenous(self): |
214 |
| - df = DataFrame({"A": pd.Categorical([1, 2]), "B": pd.Categorical([1, 2])}) |
215 |
| - result = np.asarray(df) |
216 |
| - # may change from object in the future |
217 |
| - expected = np.array([[1, 1], [2, 2]], dtype="object") |
218 |
| - tm.assert_numpy_array_equal(result, expected) |
219 |
| - |
220 |
| - def test_str_to_small_float_conversion_type(self): |
221 |
| - # GH 20388 |
222 |
| - np.random.seed(13) |
223 |
| - col_data = [str(np.random.random() * 1e-12) for _ in range(5)] |
224 |
| - result = DataFrame(col_data, columns=["A"]) |
225 |
| - expected = DataFrame(col_data, columns=["A"], dtype=object) |
226 |
| - tm.assert_frame_equal(result, expected) |
227 |
| - # change the dtype of the elements from object to float one by one |
228 |
| - result.loc[result.index, "A"] = [float(x) for x in col_data] |
229 |
| - expected = DataFrame(col_data, columns=["A"], dtype=float) |
230 |
| - tm.assert_frame_equal(result, expected) |
0 commit comments