@@ -381,18 +381,16 @@ def _na_for_min_count(
381
381
if is_numeric_dtype (values ):
382
382
values = values .astype ("float64" )
383
383
fill_value = na_value_for_dtype (values .dtype )
384
+ if fill_value is NaT :
385
+ fill_value = values .dtype .type ("NaT" , "ns" )
384
386
385
387
if values .ndim == 1 :
386
388
return fill_value
387
389
else :
388
390
assert axis is not None # assertion to make mypy happy
389
391
result_shape = values .shape [:axis ] + values .shape [axis + 1 :]
390
- # calling np.full with dtype parameter throws an ValueError when called
391
- # with dtype=np.datetime64 and and fill_value=pd.NaT
392
- try :
393
- result = np .full (result_shape , fill_value , dtype = values .dtype )
394
- except ValueError :
395
- result = np .full (result_shape , fill_value )
392
+
393
+ result = np .full (result_shape , fill_value , dtype = values .dtype )
396
394
return result
397
395
398
396
@@ -526,11 +524,9 @@ def nansum(
526
524
def _mask_datetimelike_result (
527
525
result : Union [np .ndarray , np .datetime64 , np .timedelta64 ],
528
526
axis : Optional [int ],
529
- mask : Optional [ np .ndarray ] ,
527
+ mask : np .ndarray ,
530
528
orig_values : np .ndarray ,
531
529
):
532
- if mask is None :
533
- mask = isna (orig_values )
534
530
if isinstance (result , np .ndarray ):
535
531
# we need to apply the mask
536
532
result = result .astype ("i8" ).view (orig_values .dtype )
0 commit comments