forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_frame.py
1344 lines (1055 loc) · 49.1 KB
/
test_frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable-msg=E1101,W0612
import operator
import pytest
from warnings import catch_warnings
from numpy import nan
import numpy as np
import pandas as pd
from pandas import Series, DataFrame, bdate_range, Panel
from pandas.core.dtypes.common import (
is_bool_dtype,
is_float_dtype,
is_object_dtype,
is_float)
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.tseries.offsets import BDay
from pandas.util import testing as tm
from pandas.compat import lrange
from pandas import compat
from pandas.core.sparse import frame as spf
from pandas._libs.sparse import BlockIndex, IntIndex
from pandas.core.sparse.api import SparseSeries, SparseDataFrame, SparseArray
from pandas.tests.frame.test_api import SharedWithSparse
class TestSparseDataFrame(SharedWithSparse):
klass = SparseDataFrame
def setup_method(self, method):
self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
'C': np.arange(10, dtype=np.float64),
'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}
self.dates = bdate_range('1/1/2011', periods=10)
self.orig = pd.DataFrame(self.data, index=self.dates)
self.iorig = pd.DataFrame(self.data, index=self.dates)
self.frame = SparseDataFrame(self.data, index=self.dates)
self.iframe = SparseDataFrame(self.data, index=self.dates,
default_kind='integer')
values = self.frame.values.copy()
values[np.isnan(values)] = 0
self.zorig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
index=self.dates)
self.zframe = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
default_fill_value=0, index=self.dates)
values = self.frame.values.copy()
values[np.isnan(values)] = 2
self.fill_orig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
index=self.dates)
self.fill_frame = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
default_fill_value=2,
index=self.dates)
self.empty = SparseDataFrame()
def test_fill_value_when_combine_const(self):
# GH12723
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float')
df = SparseDataFrame({'foo': dat}, index=range(6))
exp = df.fillna(0).add(2)
res = df.add(2, fill_value=0)
tm.assert_sp_frame_equal(res, exp)
def test_as_matrix(self):
empty = self.empty.as_matrix()
assert empty.shape == (0, 0)
no_cols = SparseDataFrame(index=np.arange(10))
mat = no_cols.as_matrix()
assert mat.shape == (10, 0)
no_index = SparseDataFrame(columns=np.arange(10))
mat = no_index.as_matrix()
assert mat.shape == (0, 10)
def test_copy(self):
cp = self.frame.copy()
assert isinstance(cp, SparseDataFrame)
tm.assert_sp_frame_equal(cp, self.frame)
# as of v0.15.0
# this is now identical (but not is_a )
assert cp.index.identical(self.frame.index)
def test_constructor(self):
for col, series in compat.iteritems(self.frame):
assert isinstance(series, SparseSeries)
assert isinstance(self.iframe['A'].sp_index, IntIndex)
# constructed zframe from matrix above
assert self.zframe['A'].fill_value == 0
tm.assert_numpy_array_equal(pd.SparseArray([1., 2., 3., 4., 5., 6.]),
self.zframe['A'].values)
tm.assert_numpy_array_equal(np.array([0., 0., 0., 0., 1., 2.,
3., 4., 5., 6.]),
self.zframe['A'].to_dense().values)
# construct no data
sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
for col, series in compat.iteritems(sdf):
assert isinstance(series, SparseSeries)
# construct from nested dict
data = {}
for c, s in compat.iteritems(self.frame):
data[c] = s.to_dict()
sdf = SparseDataFrame(data)
tm.assert_sp_frame_equal(sdf, self.frame)
# TODO: test data is copied from inputs
# init dict with different index
idx = self.frame.index[:5]
cons = SparseDataFrame(
self.frame, index=idx, columns=self.frame.columns,
default_fill_value=self.frame.default_fill_value,
default_kind=self.frame.default_kind, copy=True)
reindexed = self.frame.reindex(idx)
tm.assert_sp_frame_equal(cons, reindexed, exact_indices=False)
# assert level parameter breaks reindex
with pytest.raises(TypeError):
self.frame.reindex(idx, level=0)
repr(self.frame)
def test_constructor_ndarray(self):
# no index or columns
sp = SparseDataFrame(self.frame.values)
# 1d
sp = SparseDataFrame(self.data['A'], index=self.dates, columns=['A'])
tm.assert_sp_frame_equal(sp, self.frame.reindex(columns=['A']))
# raise on level argument
pytest.raises(TypeError, self.frame.reindex, columns=['A'],
level=1)
# wrong length index / columns
with tm.assert_raises_regex(ValueError, "^Index length"):
SparseDataFrame(self.frame.values, index=self.frame.index[:-1])
with tm.assert_raises_regex(ValueError, "^Column length"):
SparseDataFrame(self.frame.values, columns=self.frame.columns[:-1])
# GH 9272
def test_constructor_empty(self):
sp = SparseDataFrame()
assert len(sp.index) == 0
assert len(sp.columns) == 0
def test_constructor_dataframe(self):
dense = self.frame.to_dense()
sp = SparseDataFrame(dense)
tm.assert_sp_frame_equal(sp, self.frame)
def test_constructor_convert_index_once(self):
arr = np.array([1.5, 2.5, 3.5])
sdf = SparseDataFrame(columns=lrange(4), index=arr)
assert sdf[0].index is sdf[1].index
def test_constructor_from_series(self):
# GH 2873
x = Series(np.random.randn(10000), name='a')
x = x.to_sparse(fill_value=0)
assert isinstance(x, SparseSeries)
df = SparseDataFrame(x)
assert isinstance(df, SparseDataFrame)
x = Series(np.random.randn(10000), name='a')
y = Series(np.random.randn(10000), name='b')
x2 = x.astype(float)
x2.loc[:9998] = np.NaN
# TODO: x_sparse is unused...fix
x_sparse = x2.to_sparse(fill_value=np.NaN) # noqa
# Currently fails too with weird ufunc error
# df1 = SparseDataFrame([x_sparse, y])
y.loc[:9998] = 0
# TODO: y_sparse is unsused...fix
y_sparse = y.to_sparse(fill_value=0) # noqa
# without sparse value raises error
# df2 = SparseDataFrame([x2_sparse, y])
def test_constructor_preserve_attr(self):
# GH 13866
arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0)
assert arr.dtype == np.int64
assert arr.fill_value == 0
df = pd.SparseDataFrame({'x': arr})
assert df['x'].dtype == np.int64
assert df['x'].fill_value == 0
s = pd.SparseSeries(arr, name='x')
assert s.dtype == np.int64
assert s.fill_value == 0
df = pd.SparseDataFrame(s)
assert df['x'].dtype == np.int64
assert df['x'].fill_value == 0
df = pd.SparseDataFrame({'x': s})
assert df['x'].dtype == np.int64
assert df['x'].fill_value == 0
def test_constructor_nan_dataframe(self):
# GH 10079
trains = np.arange(100)
tresholds = [10, 20, 30, 40, 50, 60]
tuples = [(i, j) for i in trains for j in tresholds]
index = pd.MultiIndex.from_tuples(tuples,
names=['trains', 'tresholds'])
matrix = np.empty((len(index), len(trains)))
matrix.fill(np.nan)
df = pd.DataFrame(matrix, index=index, columns=trains, dtype=float)
result = df.to_sparse()
expected = pd.SparseDataFrame(matrix, index=index, columns=trains,
dtype=float)
tm.assert_sp_frame_equal(result, expected)
def test_type_coercion_at_construction(self):
# GH 15682
result = pd.SparseDataFrame(
{'a': [1, 0, 0], 'b': [0, 1, 0], 'c': [0, 0, 1]}, dtype='uint8',
default_fill_value=0)
expected = pd.SparseDataFrame(
{'a': pd.SparseSeries([1, 0, 0], dtype='uint8'),
'b': pd.SparseSeries([0, 1, 0], dtype='uint8'),
'c': pd.SparseSeries([0, 0, 1], dtype='uint8')},
default_fill_value=0)
tm.assert_sp_frame_equal(result, expected)
def test_dtypes(self):
df = DataFrame(np.random.randn(10000, 4))
df.loc[:9998] = np.nan
sdf = df.to_sparse()
result = sdf.get_dtype_counts()
expected = Series({'float64': 4})
tm.assert_series_equal(result, expected)
def test_shape(self):
# see gh-10452
assert self.frame.shape == (10, 4)
assert self.iframe.shape == (10, 4)
assert self.zframe.shape == (10, 4)
assert self.fill_frame.shape == (10, 4)
def test_str(self):
df = DataFrame(np.random.randn(10000, 4))
df.loc[:9998] = np.nan
sdf = df.to_sparse()
str(sdf)
def test_array_interface(self):
res = np.sqrt(self.frame)
dres = np.sqrt(self.frame.to_dense())
tm.assert_frame_equal(res.to_dense(), dres)
def test_pickle(self):
def _test_roundtrip(frame, orig):
result = tm.round_trip_pickle(frame)
tm.assert_sp_frame_equal(frame, result)
tm.assert_frame_equal(result.to_dense(), orig, check_dtype=False)
_test_roundtrip(SparseDataFrame(), DataFrame())
self._check_all(_test_roundtrip)
def test_dense_to_sparse(self):
df = DataFrame({'A': [nan, nan, nan, 1, 2],
'B': [1, 2, nan, nan, nan]})
sdf = df.to_sparse()
assert isinstance(sdf, SparseDataFrame)
assert np.isnan(sdf.default_fill_value)
assert isinstance(sdf['A'].sp_index, BlockIndex)
tm.assert_frame_equal(sdf.to_dense(), df)
sdf = df.to_sparse(kind='integer')
assert isinstance(sdf['A'].sp_index, IntIndex)
df = DataFrame({'A': [0, 0, 0, 1, 2],
'B': [1, 2, 0, 0, 0]}, dtype=float)
sdf = df.to_sparse(fill_value=0)
assert sdf.default_fill_value == 0
tm.assert_frame_equal(sdf.to_dense(), df)
def test_density(self):
df = SparseSeries([nan, nan, nan, 0, 1, 2, 3, 4, 5, 6])
assert df.density == 0.7
df = SparseDataFrame({'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
'C': np.arange(10),
'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]})
assert df.density == 0.75
def test_sparse_to_dense(self):
pass
def test_sparse_series_ops(self):
self._check_frame_ops(self.frame)
def test_sparse_series_ops_i(self):
self._check_frame_ops(self.iframe)
def test_sparse_series_ops_z(self):
self._check_frame_ops(self.zframe)
def test_sparse_series_ops_fill(self):
self._check_frame_ops(self.fill_frame)
def _check_frame_ops(self, frame):
def _compare_to_dense(a, b, da, db, op):
sparse_result = op(a, b)
dense_result = op(da, db)
fill = sparse_result.default_fill_value
dense_result = dense_result.to_sparse(fill_value=fill)
tm.assert_sp_frame_equal(sparse_result, dense_result,
exact_indices=False)
if isinstance(a, DataFrame) and isinstance(db, DataFrame):
mixed_result = op(a, db)
assert isinstance(mixed_result, SparseDataFrame)
tm.assert_sp_frame_equal(mixed_result, sparse_result,
exact_indices=False)
opnames = ['add', 'sub', 'mul', 'truediv', 'floordiv']
ops = [getattr(operator, name) for name in opnames]
fidx = frame.index
# time series operations
series = [frame['A'], frame['B'], frame['C'], frame['D'],
frame['A'].reindex(fidx[:7]), frame['A'].reindex(fidx[::2]),
SparseSeries(
[], index=[])]
for op in opnames:
_compare_to_dense(frame, frame[::2], frame.to_dense(),
frame[::2].to_dense(), getattr(operator, op))
# 2304, no auto-broadcasting
for i, s in enumerate(series):
f = lambda a, b: getattr(a, op)(b, axis='index')
_compare_to_dense(frame, s, frame.to_dense(), s.to_dense(), f)
# rops are not implemented
# _compare_to_dense(s, frame, s.to_dense(),
# frame.to_dense(), f)
# cross-sectional operations
series = [frame.xs(fidx[0]), frame.xs(fidx[3]), frame.xs(fidx[5]),
frame.xs(fidx[7]), frame.xs(fidx[5])[:2]]
for op in ops:
for s in series:
_compare_to_dense(frame, s, frame.to_dense(), s, op)
_compare_to_dense(s, frame, s, frame.to_dense(), op)
# it works!
result = self.frame + self.frame.loc[:, ['A', 'B']] # noqa
def test_op_corners(self):
empty = self.empty + self.empty
assert empty.empty
foo = self.frame + self.empty
assert isinstance(foo.index, DatetimeIndex)
tm.assert_frame_equal(foo, self.frame * np.nan)
foo = self.empty + self.frame
tm.assert_frame_equal(foo, self.frame * np.nan)
def test_scalar_ops(self):
pass
def test_getitem(self):
# 1585 select multiple columns
sdf = SparseDataFrame(index=[0, 1, 2], columns=['a', 'b', 'c'])
result = sdf[['a', 'b']]
exp = sdf.reindex(columns=['a', 'b'])
tm.assert_sp_frame_equal(result, exp)
pytest.raises(Exception, sdf.__getitem__, ['a', 'd'])
def test_iloc(self):
# 2227
result = self.frame.iloc[:, 0]
assert isinstance(result, SparseSeries)
tm.assert_sp_series_equal(result, self.frame['A'])
# preserve sparse index type. #2251
data = {'A': [0, 1]}
iframe = SparseDataFrame(data, default_kind='integer')
tm.assert_class_equal(iframe['A'].sp_index,
iframe.iloc[:, 0].sp_index)
def test_set_value(self):
# ok, as the index gets converted to object
frame = self.frame.copy()
res = frame.set_value('foobar', 'B', 1.5)
assert res.index.dtype == 'object'
res = self.frame
res.index = res.index.astype(object)
res = self.frame.set_value('foobar', 'B', 1.5)
assert res is not self.frame
assert res.index[-1] == 'foobar'
assert res.get_value('foobar', 'B') == 1.5
res2 = res.set_value('foobar', 'qux', 1.5)
assert res2 is not res
tm.assert_index_equal(res2.columns,
pd.Index(list(self.frame.columns) + ['qux']))
assert res2.get_value('foobar', 'qux') == 1.5
def test_fancy_index_misc(self):
# axis = 0
sliced = self.frame.iloc[-2:, :]
expected = self.frame.reindex(index=self.frame.index[-2:])
tm.assert_sp_frame_equal(sliced, expected)
# axis = 1
sliced = self.frame.iloc[:, -2:]
expected = self.frame.reindex(columns=self.frame.columns[-2:])
tm.assert_sp_frame_equal(sliced, expected)
def test_getitem_overload(self):
# slicing
sl = self.frame[:20]
tm.assert_sp_frame_equal(sl, self.frame.reindex(self.frame.index[:20]))
# boolean indexing
d = self.frame.index[5]
indexer = self.frame.index > d
subindex = self.frame.index[indexer]
subframe = self.frame[indexer]
tm.assert_index_equal(subindex, subframe.index)
pytest.raises(Exception, self.frame.__getitem__, indexer[:-1])
def test_setitem(self):
def _check_frame(frame, orig):
N = len(frame)
# insert SparseSeries
frame['E'] = frame['A']
assert isinstance(frame['E'], SparseSeries)
tm.assert_sp_series_equal(frame['E'], frame['A'],
check_names=False)
# insert SparseSeries differently-indexed
to_insert = frame['A'][::2]
frame['E'] = to_insert
expected = to_insert.to_dense().reindex(frame.index)
result = frame['E'].to_dense()
tm.assert_series_equal(result, expected, check_names=False)
assert result.name == 'E'
# insert Series
frame['F'] = frame['A'].to_dense()
assert isinstance(frame['F'], SparseSeries)
tm.assert_sp_series_equal(frame['F'], frame['A'],
check_names=False)
# insert Series differently-indexed
to_insert = frame['A'].to_dense()[::2]
frame['G'] = to_insert
expected = to_insert.reindex(frame.index)
expected.name = 'G'
tm.assert_series_equal(frame['G'].to_dense(), expected)
# insert ndarray
frame['H'] = np.random.randn(N)
assert isinstance(frame['H'], SparseSeries)
to_sparsify = np.random.randn(N)
to_sparsify[N // 2:] = frame.default_fill_value
frame['I'] = to_sparsify
assert len(frame['I'].sp_values) == N // 2
# insert ndarray wrong size
pytest.raises(Exception, frame.__setitem__, 'foo',
np.random.randn(N - 1))
# scalar value
frame['J'] = 5
assert len(frame['J'].sp_values) == N
assert (frame['J'].sp_values == 5).all()
frame['K'] = frame.default_fill_value
assert len(frame['K'].sp_values) == 0
self._check_all(_check_frame)
def test_setitem_corner(self):
self.frame['a'] = self.frame['B']
tm.assert_sp_series_equal(self.frame['a'], self.frame['B'],
check_names=False)
def test_setitem_array(self):
arr = self.frame['B']
self.frame['E'] = arr
tm.assert_sp_series_equal(self.frame['E'], self.frame['B'],
check_names=False)
self.frame['F'] = arr[:-1]
index = self.frame.index[:-1]
tm.assert_sp_series_equal(self.frame['E'].reindex(index),
self.frame['F'].reindex(index),
check_names=False)
def test_delitem(self):
A = self.frame['A']
C = self.frame['C']
del self.frame['B']
assert 'B' not in self.frame
tm.assert_sp_series_equal(self.frame['A'], A)
tm.assert_sp_series_equal(self.frame['C'], C)
del self.frame['D']
assert 'D' not in self.frame
del self.frame['A']
assert 'A' not in self.frame
def test_set_columns(self):
self.frame.columns = self.frame.columns
pytest.raises(Exception, setattr, self.frame, 'columns',
self.frame.columns[:-1])
def test_set_index(self):
self.frame.index = self.frame.index
pytest.raises(Exception, setattr, self.frame, 'index',
self.frame.index[:-1])
def test_append(self):
a = self.frame[:5]
b = self.frame[5:]
appended = a.append(b)
tm.assert_sp_frame_equal(appended, self.frame, exact_indices=False)
a = self.frame.iloc[:5, :3]
b = self.frame.iloc[5:]
appended = a.append(b)
tm.assert_sp_frame_equal(appended.iloc[:, :3], self.frame.iloc[:, :3],
exact_indices=False)
def test_apply(self):
applied = self.frame.apply(np.sqrt)
assert isinstance(applied, SparseDataFrame)
tm.assert_almost_equal(applied.values, np.sqrt(self.frame.values))
applied = self.fill_frame.apply(np.sqrt)
assert applied['A'].fill_value == np.sqrt(2)
# agg / broadcast
broadcasted = self.frame.apply(np.sum, broadcast=True)
assert isinstance(broadcasted, SparseDataFrame)
exp = self.frame.to_dense().apply(np.sum, broadcast=True)
tm.assert_frame_equal(broadcasted.to_dense(), exp)
assert self.empty.apply(np.sqrt) is self.empty
from pandas.core import nanops
applied = self.frame.apply(np.sum)
tm.assert_series_equal(applied,
self.frame.to_dense().apply(nanops.nansum))
def test_apply_nonuq(self):
orig = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=['a', 'a', 'c'])
sparse = orig.to_sparse()
res = sparse.apply(lambda s: s[0], axis=1)
exp = orig.apply(lambda s: s[0], axis=1)
# dtype must be kept
assert res.dtype == np.int64
# ToDo: apply must return subclassed dtype
assert isinstance(res, pd.Series)
tm.assert_series_equal(res.to_dense(), exp)
# df.T breaks
sparse = orig.T.to_sparse()
res = sparse.apply(lambda s: s[0], axis=0) # noqa
exp = orig.T.apply(lambda s: s[0], axis=0)
# TODO: no non-unique columns supported in sparse yet
# tm.assert_series_equal(res.to_dense(), exp)
def test_applymap(self):
# just test that it works
result = self.frame.applymap(lambda x: x * 2)
assert isinstance(result, SparseDataFrame)
def test_astype(self):
sparse = pd.SparseDataFrame({'A': SparseArray([1, 2, 3, 4],
dtype=np.int64),
'B': SparseArray([4, 5, 6, 7],
dtype=np.int64)})
assert sparse['A'].dtype == np.int64
assert sparse['B'].dtype == np.int64
res = sparse.astype(np.float64)
exp = pd.SparseDataFrame({'A': SparseArray([1., 2., 3., 4.],
fill_value=0.),
'B': SparseArray([4., 5., 6., 7.],
fill_value=0.)},
default_fill_value=np.nan)
tm.assert_sp_frame_equal(res, exp)
assert res['A'].dtype == np.float64
assert res['B'].dtype == np.float64
sparse = pd.SparseDataFrame({'A': SparseArray([0, 2, 0, 4],
dtype=np.int64),
'B': SparseArray([0, 5, 0, 7],
dtype=np.int64)},
default_fill_value=0)
assert sparse['A'].dtype == np.int64
assert sparse['B'].dtype == np.int64
res = sparse.astype(np.float64)
exp = pd.SparseDataFrame({'A': SparseArray([0., 2., 0., 4.],
fill_value=0.),
'B': SparseArray([0., 5., 0., 7.],
fill_value=0.)},
default_fill_value=0.)
tm.assert_sp_frame_equal(res, exp)
assert res['A'].dtype == np.float64
assert res['B'].dtype == np.float64
def test_astype_bool(self):
sparse = pd.SparseDataFrame({'A': SparseArray([0, 2, 0, 4],
fill_value=0,
dtype=np.int64),
'B': SparseArray([0, 5, 0, 7],
fill_value=0,
dtype=np.int64)},
default_fill_value=0)
assert sparse['A'].dtype == np.int64
assert sparse['B'].dtype == np.int64
res = sparse.astype(bool)
exp = pd.SparseDataFrame({'A': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False),
'B': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False)},
default_fill_value=False)
tm.assert_sp_frame_equal(res, exp)
assert res['A'].dtype == np.bool
assert res['B'].dtype == np.bool
def test_fillna(self):
df = self.zframe.reindex(lrange(5))
dense = self.zorig.reindex(lrange(5))
result = df.fillna(0)
expected = dense.fillna(0)
tm.assert_sp_frame_equal(result, expected.to_sparse(fill_value=0),
exact_indices=False)
tm.assert_frame_equal(result.to_dense(), expected)
result = df.copy()
result.fillna(0, inplace=True)
expected = dense.fillna(0)
tm.assert_sp_frame_equal(result, expected.to_sparse(fill_value=0),
exact_indices=False)
tm.assert_frame_equal(result.to_dense(), expected)
result = df.copy()
result = df['A']
result.fillna(0, inplace=True)
expected = dense['A'].fillna(0)
# this changes internal SparseArray repr
# tm.assert_sp_series_equal(result, expected.to_sparse(fill_value=0))
tm.assert_series_equal(result.to_dense(), expected)
def test_fillna_fill_value(self):
df = pd.DataFrame({'A': [1, 0, 0], 'B': [np.nan, np.nan, 4]})
sparse = pd.SparseDataFrame(df)
tm.assert_frame_equal(sparse.fillna(-1).to_dense(),
df.fillna(-1), check_dtype=False)
sparse = pd.SparseDataFrame(df, default_fill_value=0)
tm.assert_frame_equal(sparse.fillna(-1).to_dense(),
df.fillna(-1), check_dtype=False)
def test_sparse_frame_pad_backfill_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
sdf = df.to_sparse()
result = sdf[:2].reindex(index, method='pad', limit=5)
expected = sdf[:2].reindex(index).fillna(method='pad')
expected = expected.to_dense()
expected.values[-3:] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
result = sdf[-2:].reindex(index, method='backfill', limit=5)
expected = sdf[-2:].reindex(index).fillna(method='backfill')
expected = expected.to_dense()
expected.values[:3] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
def test_sparse_frame_fillna_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
sdf = df.to_sparse()
result = sdf[:2].reindex(index)
result = result.fillna(method='pad', limit=5)
expected = sdf[:2].reindex(index).fillna(method='pad')
expected = expected.to_dense()
expected.values[-3:] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
result = sdf[-2:].reindex(index)
result = result.fillna(method='backfill', limit=5)
expected = sdf[-2:].reindex(index).fillna(method='backfill')
expected = expected.to_dense()
expected.values[:3] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
def test_rename(self):
result = self.frame.rename(index=str)
expected = SparseDataFrame(self.data, index=self.dates.strftime(
"%Y-%m-%d %H:%M:%S"))
tm.assert_sp_frame_equal(result, expected)
result = self.frame.rename(columns=lambda x: '%s%d' % (x, len(x)))
data = {'A1': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
'B1': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
'C1': np.arange(10, dtype=np.float64),
'D1': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}
expected = SparseDataFrame(data, index=self.dates)
tm.assert_sp_frame_equal(result, expected)
def test_corr(self):
res = self.frame.corr()
tm.assert_frame_equal(res, self.frame.to_dense().corr())
def test_describe(self):
self.frame['foo'] = np.nan
self.frame.get_dtype_counts()
str(self.frame)
desc = self.frame.describe() # noqa
def test_join(self):
left = self.frame.loc[:, ['A', 'B']]
right = self.frame.loc[:, ['C', 'D']]
joined = left.join(right)
tm.assert_sp_frame_equal(joined, self.frame, exact_indices=False)
right = self.frame.loc[:, ['B', 'D']]
pytest.raises(Exception, left.join, right)
with tm.assert_raises_regex(ValueError,
'Other Series must have a name'):
self.frame.join(Series(
np.random.randn(len(self.frame)), index=self.frame.index))
def test_reindex(self):
def _check_frame(frame):
index = frame.index
sidx = index[::2]
sidx2 = index[:5] # noqa
sparse_result = frame.reindex(sidx)
dense_result = frame.to_dense().reindex(sidx)
tm.assert_frame_equal(sparse_result.to_dense(), dense_result)
tm.assert_frame_equal(frame.reindex(list(sidx)).to_dense(),
dense_result)
sparse_result2 = sparse_result.reindex(index)
dense_result2 = dense_result.reindex(index)
tm.assert_frame_equal(sparse_result2.to_dense(), dense_result2)
# propagate CORRECT fill value
tm.assert_almost_equal(sparse_result.default_fill_value,
frame.default_fill_value)
tm.assert_almost_equal(sparse_result['A'].fill_value,
frame['A'].fill_value)
# length zero
length_zero = frame.reindex([])
assert len(length_zero) == 0
assert len(length_zero.columns) == len(frame.columns)
assert len(length_zero['A']) == 0
# frame being reindexed has length zero
length_n = length_zero.reindex(index)
assert len(length_n) == len(frame)
assert len(length_n.columns) == len(frame.columns)
assert len(length_n['A']) == len(frame)
# reindex columns
reindexed = frame.reindex(columns=['A', 'B', 'Z'])
assert len(reindexed.columns) == 3
tm.assert_almost_equal(reindexed['Z'].fill_value,
frame.default_fill_value)
assert np.isnan(reindexed['Z'].sp_values).all()
_check_frame(self.frame)
_check_frame(self.iframe)
_check_frame(self.zframe)
_check_frame(self.fill_frame)
# with copy=False
reindexed = self.frame.reindex(self.frame.index, copy=False)
reindexed['F'] = reindexed['A']
assert 'F' in self.frame
reindexed = self.frame.reindex(self.frame.index)
reindexed['G'] = reindexed['A']
assert 'G' not in self.frame
def test_reindex_fill_value(self):
rng = bdate_range('20110110', periods=20)
result = self.zframe.reindex(rng, fill_value=0)
exp = self.zorig.reindex(rng, fill_value=0)
exp = exp.to_sparse(self.zframe.default_fill_value)
tm.assert_sp_frame_equal(result, exp)
def test_reindex_method(self):
sparse = SparseDataFrame(data=[[11., 12., 14.],
[21., 22., 24.],
[41., 42., 44.]],
index=[1, 2, 4],
columns=[1, 2, 4],
dtype=float)
# Over indices
# default method
result = sparse.reindex(index=range(6))
expected = SparseDataFrame(data=[[nan, nan, nan],
[11., 12., 14.],
[21., 22., 24.],
[nan, nan, nan],
[41., 42., 44.],
[nan, nan, nan]],
index=range(6),
columns=[1, 2, 4],
dtype=float)
tm.assert_sp_frame_equal(result, expected)
# method='bfill'
result = sparse.reindex(index=range(6), method='bfill')
expected = SparseDataFrame(data=[[11., 12., 14.],
[11., 12., 14.],
[21., 22., 24.],
[41., 42., 44.],
[41., 42., 44.],
[nan, nan, nan]],
index=range(6),
columns=[1, 2, 4],
dtype=float)
tm.assert_sp_frame_equal(result, expected)
# method='ffill'
result = sparse.reindex(index=range(6), method='ffill')
expected = SparseDataFrame(data=[[nan, nan, nan],
[11., 12., 14.],
[21., 22., 24.],
[21., 22., 24.],
[41., 42., 44.],
[41., 42., 44.]],
index=range(6),
columns=[1, 2, 4],
dtype=float)
tm.assert_sp_frame_equal(result, expected)
# Over columns
# default method
result = sparse.reindex(columns=range(6))
expected = SparseDataFrame(data=[[nan, 11., 12., nan, 14., nan],
[nan, 21., 22., nan, 24., nan],
[nan, 41., 42., nan, 44., nan]],
index=[1, 2, 4],
columns=range(6),
dtype=float)
tm.assert_sp_frame_equal(result, expected)
# method='bfill'
with pytest.raises(NotImplementedError):
sparse.reindex(columns=range(6), method='bfill')
# method='ffill'
with pytest.raises(NotImplementedError):
sparse.reindex(columns=range(6), method='ffill')
def test_take(self):
result = self.frame.take([1, 0, 2], axis=1)
expected = self.frame.reindex(columns=['B', 'A', 'C'])
tm.assert_sp_frame_equal(result, expected)
def test_to_dense(self):
def _check(frame, orig):
dense_dm = frame.to_dense()
tm.assert_frame_equal(frame, dense_dm)
tm.assert_frame_equal(dense_dm, orig, check_dtype=False)
self._check_all(_check)
def test_stack_sparse_frame(self):
with catch_warnings(record=True):
def _check(frame):
dense_frame = frame.to_dense() # noqa
wp = Panel.from_dict({'foo': frame})
from_dense_lp = wp.to_frame()
from_sparse_lp = spf.stack_sparse_frame(frame)
tm.assert_numpy_array_equal(from_dense_lp.values,
from_sparse_lp.values)
_check(self.frame)
_check(self.iframe)
# for now
pytest.raises(Exception, _check, self.zframe)
pytest.raises(Exception, _check, self.fill_frame)
def test_transpose(self):
def _check(frame, orig):
transposed = frame.T
untransposed = transposed.T
tm.assert_sp_frame_equal(frame, untransposed)
tm.assert_frame_equal(frame.T.to_dense(), orig.T)
tm.assert_frame_equal(frame.T.T.to_dense(), orig.T.T)
tm.assert_sp_frame_equal(frame, frame.T.T, exact_indices=False)
self._check_all(_check)
def test_shift(self):
def _check(frame, orig):
shifted = frame.shift(0)
exp = orig.shift(0)
tm.assert_frame_equal(shifted.to_dense(), exp)
shifted = frame.shift(1)
exp = orig.shift(1)
tm.assert_frame_equal(shifted, exp)
shifted = frame.shift(-2)
exp = orig.shift(-2)