forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroupby.py
745 lines (527 loc) · 23.9 KB
/
groupby.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
from .pandas_vb_common import *
from string import ascii_letters, digits
from itertools import product
class groupby_agg_builtins(object):
goal_time = 0.2
def setup(self):
np.random.seed(27182)
self.n = 100000
self.df = DataFrame(np.random.randint(1, (self.n / 100), (self.n, 3)), columns=['jim', 'joe', 'jolie'])
def time_groupby_agg_builtins1(self):
self.df.groupby('jim').agg([sum, min, max])
def time_groupby_agg_builtins2(self):
self.df.groupby(['jim', 'joe']).agg([sum, min, max])
#----------------------------------------------------------------------
# dict return values
class groupby_apply_dict_return(object):
goal_time = 0.2
def setup(self):
self.labels = np.arange(1000).repeat(10)
self.data = Series(randn(len(self.labels)))
self.f = (lambda x: {'first': x.values[0], 'last': x.values[(-1)], })
def time_groupby_apply_dict_return(self):
self.data.groupby(self.labels).apply(self.f)
#----------------------------------------------------------------------
# groups
class Groups(object):
goal_time = 0.1
size = 2 ** 22
data = {
'int64_small': Series(np.random.randint(0, 100, size=size)),
'int64_large' : Series(np.random.randint(0, 10000, size=size)),
'object_small': Series(tm.makeStringIndex(100).take(np.random.randint(0, 100, size=size))),
'object_large': Series(tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=size)))
}
param_names = ['df']
params = ['int64_small', 'int64_large', 'object_small', 'object_large']
def setup(self, df):
self.df = self.data[df]
def time_groupby_groups(self, df):
self.df.groupby(self.df).groups
#----------------------------------------------------------------------
# First / last functions
class FirstLast(object):
goal_time = 0.2
param_names = ['dtype']
params = ['float32', 'float64', 'datetime', 'object']
# with datetimes (GH7555)
def setup(self, dtype):
if dtype == 'datetime':
self.df = DataFrame(
{'values': date_range('1/1/2011', periods=100000, freq='s'),
'key': range(100000),})
elif dtype == 'object':
self.df = DataFrame(
{'values': (['foo'] * 100000),
'key': range(100000)})
else:
labels = np.arange(10000).repeat(10)
data = Series(randn(len(labels)), dtype=dtype)
data[::3] = np.nan
data[1::3] = np.nan
labels = labels.take(np.random.permutation(len(labels)))
self.df = DataFrame({'values': data, 'key': labels})
def time_groupby_first(self, dtype):
self.df.groupby('key').first()
def time_groupby_last(self, dtype):
self.df.groupby('key').last()
def time_groupby_nth_any(self, dtype):
self.df.groupby('key').nth(0, dropna='all')
def time_groupby_nth_none(self, dtype):
self.df.groupby('key').nth(0)
#----------------------------------------------------------------------
# DataFrame Apply overhead
class groupby_frame_apply(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.labels = np.random.randint(0, 2000, size=self.N)
self.labels2 = np.random.randint(0, 3, size=self.N)
self.df = DataFrame({'key': self.labels, 'key2': self.labels2, 'value1': randn(self.N), 'value2': (['foo', 'bar', 'baz', 'qux'] * (self.N / 4)), })
def f(self, g):
return 1
def time_groupby_frame_apply(self):
self.df.groupby(['key', 'key2']).apply(self.f)
def time_groupby_frame_apply_overhead(self):
self.df.groupby('key').apply(self.f)
#----------------------------------------------------------------------
# 2d grouping, aggregate many columns
class groupby_frame_cython_many_columns(object):
goal_time = 0.2
def setup(self):
self.labels = np.random.randint(0, 100, size=1000)
self.df = DataFrame(randn(1000, 1000))
def time_sum(self):
self.df.groupby(self.labels).sum()
#----------------------------------------------------------------------
# single key, long, integer key
class groupby_frame_singlekey_integer(object):
goal_time = 0.2
def setup(self):
self.data = np.random.randn(100000, 1)
self.labels = np.random.randint(0, 1000, size=100000)
self.df = DataFrame(self.data)
def time_sum(self):
self.df.groupby(self.labels).sum()
#----------------------------------------------------------------------
# DataFrame nth
class groupby_nth(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randint(1, 100, (10000, 2)))
def time_groupby_frame_nth_any(self):
self.df.groupby(0).nth(0, dropna='any')
def time_groupby_frame_nth_none(self):
self.df.groupby(0).nth(0)
def time_groupby_series_nth_any(self):
self.df[1].groupby(self.df[0]).nth(0, dropna='any')
def time_groupby_series_nth_none(self):
self.df[1].groupby(self.df[0]).nth(0)
#----------------------------------------------------------------------
# groupby_indices replacement, chop up Series
class groupby_indices(object):
goal_time = 0.2
def setup(self):
try:
self.rng = date_range('1/1/2000', '12/31/2005', freq='H')
(self.year, self.month, self.day) = (self.rng.year, self.rng.month, self.rng.day)
except:
self.rng = date_range('1/1/2000', '12/31/2000', offset=datetools.Hour())
self.year = self.rng.map((lambda x: x.year))
self.month = self.rng.map((lambda x: x.month))
self.day = self.rng.map((lambda x: x.day))
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
def time_groupby_indices(self):
len(self.ts.groupby([self.year, self.month, self.day]))
class groupby_int64_overflow(object):
goal_time = 0.2
def setup(self):
self.arr = np.random.randint(((-1) << 12), (1 << 12), ((1 << 17), 5))
self.i = np.random.choice(len(self.arr), (len(self.arr) * 5))
self.arr = np.vstack((self.arr, self.arr[self.i]))
self.i = np.random.permutation(len(self.arr))
self.arr = self.arr[self.i]
self.df = DataFrame(self.arr, columns=list('abcde'))
(self.df['jim'], self.df['joe']) = (np.random.randn(2, len(self.df)) * 10)
def time_groupby_int64_overflow(self):
self.df.groupby(list('abcde')).max()
#----------------------------------------------------------------------
# count() speed
class groupby_multi_count(object):
goal_time = 0.2
def setup(self):
self.n = 10000
self.offsets = np.random.randint(self.n, size=self.n).astype('timedelta64[ns]')
self.dates = (np.datetime64('now') + self.offsets)
self.dates[(np.random.rand(self.n) > 0.5)] = np.datetime64('nat')
self.offsets[(np.random.rand(self.n) > 0.5)] = np.timedelta64('nat')
self.value2 = np.random.randn(self.n)
self.value2[(np.random.rand(self.n) > 0.5)] = np.nan
self.obj = np.random.choice(list('ab'), size=self.n).astype(object)
self.obj[(np.random.randn(self.n) > 0.5)] = np.nan
self.df = DataFrame({'key1': np.random.randint(0, 500, size=self.n),
'key2': np.random.randint(0, 100, size=self.n),
'dates': self.dates,
'value2': self.value2,
'value3': np.random.randn(self.n),
'ints': np.random.randint(0, 1000, size=self.n),
'obj': self.obj,
'offsets': self.offsets, })
def time_groupby_multi_count(self):
self.df.groupby(['key1', 'key2']).count()
class groupby_int_count(object):
goal_time = 0.2
def setup(self):
self.n = 10000
self.df = DataFrame({'key1': randint(0, 500, size=self.n),
'key2': randint(0, 100, size=self.n),
'ints': randint(0, 1000, size=self.n),
'ints2': randint(0, 1000, size=self.n), })
def time_groupby_int_count(self):
self.df.groupby(['key1', 'key2']).count()
#----------------------------------------------------------------------
# nunique() speed
class groupby_nunique(object):
def setup(self):
self.n = 10000
self.df = DataFrame({'key1': randint(0, 500, size=self.n),
'key2': randint(0, 100, size=self.n),
'ints': randint(0, 1000, size=self.n),
'ints2': randint(0, 1000, size=self.n), })
def time_groupby_nunique(self):
self.df.groupby(['key1', 'key2']).nunique()
#----------------------------------------------------------------------
# group with different functions per column
class groupby_agg_multi(object):
goal_time = 0.2
def setup(self):
self.fac1 = np.array(['A', 'B', 'C'], dtype='O')
self.fac2 = np.array(['one', 'two'], dtype='O')
self.df = DataFrame({'key1': self.fac1.take(np.random.randint(0, 3, size=100000)), 'key2': self.fac2.take(np.random.randint(0, 2, size=100000)), 'value1': np.random.randn(100000), 'value2': np.random.randn(100000), 'value3': np.random.randn(100000), })
def time_groupby_multi_different_functions(self):
self.df.groupby(['key1', 'key2']).agg({'value1': 'mean', 'value2': 'var', 'value3': 'sum'})
def time_groupby_multi_different_numpy_functions(self):
self.df.groupby(['key1', 'key2']).agg({'value1': np.mean, 'value2': np.var, 'value3': np.sum})
class groupby_multi_index(object):
goal_time = 0.2
def setup(self):
self.n = (((5 * 7) * 11) * (1 << 9))
self.alpha = list(map(''.join, product((ascii_letters + digits), repeat=4)))
self.f = (lambda k: np.repeat(np.random.choice(self.alpha, (self.n // k)), k))
self.df = DataFrame({'a': self.f(11), 'b': self.f(7), 'c': self.f(5), 'd': self.f(1), })
self.df['joe'] = (np.random.randn(len(self.df)) * 10).round(3)
self.i = np.random.permutation(len(self.df))
self.df = self.df.iloc[self.i].reset_index(drop=True).copy()
def time_groupby_multi_index(self):
self.df.groupby(list('abcd')).max()
class groupby_multi(object):
goal_time = 0.2
def setup(self):
self.N = 100000
self.ngroups = 100
self.df = DataFrame({'key1': self.get_test_data(ngroups=self.ngroups), 'key2': self.get_test_data(ngroups=self.ngroups), 'data1': np.random.randn(self.N), 'data2': np.random.randn(self.N), })
self.simple_series = Series(np.random.randn(self.N))
self.key1 = self.df['key1']
def get_test_data(self, ngroups=100, n=100000):
self.unique_groups = range(self.ngroups)
self.arr = np.asarray(np.tile(self.unique_groups, (n / self.ngroups)), dtype=object)
if (len(self.arr) < n):
self.arr = np.asarray((list(self.arr) + self.unique_groups[:(n - len(self.arr))]), dtype=object)
random.shuffle(self.arr)
return self.arr
def f(self):
self.df.groupby(['key1', 'key2']).agg((lambda x: x.values.sum()))
def time_groupby_multi_cython(self):
self.df.groupby(['key1', 'key2']).sum()
def time_groupby_multi_python(self):
self.df.groupby(['key1', 'key2'])['data1'].agg((lambda x: x.values.sum()))
def time_groupby_multi_series_op(self):
self.df.groupby(['key1', 'key2'])['data1'].agg(np.std)
def time_groupby_series_simple_cython(self):
self.simple_series.groupby(self.key1).sum()
def time_groupby_series_simple_rank(self):
self.df.groupby('key1').rank(pct=True)
#----------------------------------------------------------------------
# size() speed
class groupby_size(object):
goal_time = 0.2
def setup(self):
self.n = 100000
self.offsets = np.random.randint(self.n, size=self.n).astype('timedelta64[ns]')
self.dates = (np.datetime64('now') + self.offsets)
self.df = DataFrame({'key1': np.random.randint(0, 500, size=self.n), 'key2': np.random.randint(0, 100, size=self.n), 'value1': np.random.randn(self.n), 'value2': np.random.randn(self.n), 'value3': np.random.randn(self.n), 'dates': self.dates, })
def time_groupby_multi_size(self):
self.df.groupby(['key1', 'key2']).size()
def time_groupby_dt_size(self):
self.df.groupby(['dates']).size()
def time_groupby_dt_timegrouper_size(self):
self.df.groupby(TimeGrouper(key='dates', freq='M')).size()
#----------------------------------------------------------------------
# groupby with a variable value for ngroups
class GroupBySuite(object):
goal_time = 0.2
param_names = ['dtype', 'ngroups']
params = [['int', 'float'], [100, 10000]]
def setup(self, dtype, ngroups):
np.random.seed(1234)
size = ngroups * 2
rng = np.arange(ngroups)
values = rng.take(np.random.randint(0, ngroups, size=size))
if dtype == 'int':
key = np.random.randint(0, size, size=size)
else:
key = np.concatenate([np.random.random(ngroups) * 0.1,
np.random.random(ngroups) * 10.0])
self.df = DataFrame({'values': values,
'key': key})
def time_all(self, dtype, ngroups):
self.df.groupby('key')['values'].all()
def time_any(self, dtype, ngroups):
self.df.groupby('key')['values'].any()
def time_count(self, dtype, ngroups):
self.df.groupby('key')['values'].count()
def time_cumcount(self, dtype, ngroups):
self.df.groupby('key')['values'].cumcount()
def time_cummax(self, dtype, ngroups):
self.df.groupby('key')['values'].cummax()
def time_cummin(self, dtype, ngroups):
self.df.groupby('key')['values'].cummin()
def time_cumprod(self, dtype, ngroups):
self.df.groupby('key')['values'].cumprod()
def time_cumsum(self, dtype, ngroups):
self.df.groupby('key')['values'].cumsum()
def time_describe(self, dtype, ngroups):
self.df.groupby('key')['values'].describe()
def time_diff(self, dtype, ngroups):
self.df.groupby('key')['values'].diff()
def time_first(self, dtype, ngroups):
self.df.groupby('key')['values'].first()
def time_head(self, dtype, ngroups):
self.df.groupby('key')['values'].head()
def time_last(self, dtype, ngroups):
self.df.groupby('key')['values'].last()
def time_mad(self, dtype, ngroups):
self.df.groupby('key')['values'].mad()
def time_max(self, dtype, ngroups):
self.df.groupby('key')['values'].max()
def time_mean(self, dtype, ngroups):
self.df.groupby('key')['values'].mean()
def time_median(self, dtype, ngroups):
self.df.groupby('key')['values'].median()
def time_min(self, dtype, ngroups):
self.df.groupby('key')['values'].min()
def time_nunique(self, dtype, ngroups):
self.df.groupby('key')['values'].nunique()
def time_pct_change(self, dtype, ngroups):
self.df.groupby('key')['values'].pct_change()
def time_prod(self, dtype, ngroups):
self.df.groupby('key')['values'].prod()
def time_rank(self, dtype, ngroups):
self.df.groupby('key')['values'].rank()
def time_sem(self, dtype, ngroups):
self.df.groupby('key')['values'].sem()
def time_size(self, dtype, ngroups):
self.df.groupby('key')['values'].size()
def time_skew(self, dtype, ngroups):
self.df.groupby('key')['values'].skew()
def time_std(self, dtype, ngroups):
self.df.groupby('key')['values'].std()
def time_sum(self, dtype, ngroups):
self.df.groupby('key')['values'].sum()
def time_tail(self, dtype, ngroups):
self.df.groupby('key')['values'].tail()
def time_unique(self, dtype, ngroups):
self.df.groupby('key')['values'].unique()
def time_value_counts(self, dtype, ngroups):
self.df.groupby('key')['values'].value_counts()
def time_var(self, dtype, ngroups):
self.df.groupby('key')['values'].var()
class groupby_float32(object):
# GH 13335
goal_time = 0.2
def setup(self):
tmp1 = (np.random.random(10000) * 0.1).astype(np.float32)
tmp2 = (np.random.random(10000) * 10.0).astype(np.float32)
tmp = np.concatenate((tmp1, tmp2))
arr = np.repeat(tmp, 10)
self.df = DataFrame(dict(a=arr, b=arr))
def time_groupby_sum(self):
self.df.groupby(['a'])['b'].sum()
class groupby_categorical(object):
goal_time = 0.2
def setup(self):
N = 100000
arr = np.random.random(N)
self.df = DataFrame(dict(
a=Categorical(np.random.randint(10000, size=N)),
b=arr))
self.df_ordered = DataFrame(dict(
a=Categorical(np.random.randint(10000, size=N), ordered=True),
b=arr))
self.df_extra_cat = DataFrame(dict(
a=Categorical(np.random.randint(100, size=N),
categories=np.arange(10000)),
b=arr))
def time_groupby_sort(self):
self.df.groupby('a')['b'].count()
def time_groupby_nosort(self):
self.df.groupby('a', sort=False)['b'].count()
def time_groupby_ordered_sort(self):
self.df_ordered.groupby('a')['b'].count()
def time_groupby_ordered_nosort(self):
self.df_ordered.groupby('a', sort=False)['b'].count()
def time_groupby_extra_cat_sort(self):
self.df_extra_cat.groupby('a')['b'].count()
def time_groupby_extra_cat_nosort(self):
self.df_extra_cat.groupby('a', sort=False)['b'].count()
class groupby_period(object):
# GH 14338
goal_time = 0.2
def make_grouper(self, N):
return pd.period_range('1900-01-01', freq='D', periods=N)
def setup(self):
N = 10000
self.grouper = self.make_grouper(N)
self.df = pd.DataFrame(np.random.randn(N, 2))
def time_groupby_sum(self):
self.df.groupby(self.grouper).sum()
class groupby_datetime(groupby_period):
def make_grouper(self, N):
return pd.date_range('1900-01-01', freq='D', periods=N)
class groupby_datetimetz(groupby_period):
def make_grouper(self, N):
return pd.date_range('1900-01-01', freq='D', periods=N,
tz='US/Central')
#----------------------------------------------------------------------
# Series.value_counts
class series_value_counts(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(0, 1000, size=100000))
self.s2 = self.s.astype(float)
self.K = 1000
self.N = 100000
self.uniques = tm.makeStringIndex(self.K).values
self.s3 = Series(np.tile(self.uniques, (self.N // self.K)))
def time_value_counts_int64(self):
self.s.value_counts()
def time_value_counts_float64(self):
self.s2.value_counts()
def time_value_counts_strings(self):
self.s.value_counts()
#----------------------------------------------------------------------
# pivot_table
class groupby_pivot_table(object):
goal_time = 0.2
def setup(self):
self.fac1 = np.array(['A', 'B', 'C'], dtype='O')
self.fac2 = np.array(['one', 'two'], dtype='O')
self.ind1 = np.random.randint(0, 3, size=100000)
self.ind2 = np.random.randint(0, 2, size=100000)
self.df = DataFrame({'key1': self.fac1.take(self.ind1), 'key2': self.fac2.take(self.ind2), 'key3': self.fac2.take(self.ind2), 'value1': np.random.randn(100000), 'value2': np.random.randn(100000), 'value3': np.random.randn(100000), })
def time_groupby_pivot_table(self):
self.df.pivot_table(index='key1', columns=['key2', 'key3'])
#----------------------------------------------------------------------
# Sum booleans #2692
class groupby_sum_booleans(object):
goal_time = 0.2
def setup(self):
self.N = 500
self.df = DataFrame({'ii': range(self.N), 'bb': [True for x in range(self.N)], })
def time_groupby_sum_booleans(self):
self.df.groupby('ii').sum()
#----------------------------------------------------------------------
# multi-indexed group sum #9049
class groupby_sum_multiindex(object):
goal_time = 0.2
def setup(self):
self.N = 50
self.df = DataFrame({'A': (list(range(self.N)) * 2), 'B': list(range((self.N * 2))), 'C': 1, }).set_index(['A', 'B'])
def time_groupby_sum_multiindex(self):
self.df.groupby(level=[0, 1]).sum()
#-------------------------------------------------------------------------------
# Transform testing
class Transform(object):
goal_time = 0.2
def setup(self):
n1 = 400
n2 = 250
index = MultiIndex(
levels=[np.arange(n1), pd.util.testing.makeStringIndex(n2)],
labels=[[i for i in range(n1) for _ in range(n2)],
(list(range(n2)) * n1)],
names=['lev1', 'lev2'])
data = DataFrame(np.random.randn(n1 * n2, 3),
index=index, columns=['col1', 'col20', 'col3'])
step = int((n1 * n2 * 0.1))
for col in range(len(data.columns)):
idx = col
while (idx < len(data)):
data.set_value(data.index[idx], data.columns[col], np.nan)
idx += step
self.df = data
self.f_fillna = (lambda x: x.fillna(method='pad'))
np.random.seed(2718281)
n = 20000
self.df1 = DataFrame(np.random.randint(1, n, (n, 3)),
columns=['jim', 'joe', 'jolie'])
self.df2 = self.df1.copy()
self.df2['jim'] = self.df2['joe']
self.df3 = DataFrame(np.random.randint(1, (n / 10), (n, 3)),
columns=['jim', 'joe', 'jolie'])
self.df4 = self.df3.copy()
self.df4['jim'] = self.df4['joe']
def time_transform_func(self):
self.df.groupby(level='lev2').transform(self.f_fillna)
def time_transform_ufunc(self):
self.df.groupby(level='lev1').transform(np.max)
def time_transform_multi_key1(self):
self.df1.groupby(['jim', 'joe'])['jolie'].transform('max')
def time_transform_multi_key2(self):
self.df2.groupby(['jim', 'joe'])['jolie'].transform('max')
def time_transform_multi_key3(self):
self.df3.groupby(['jim', 'joe'])['jolie'].transform('max')
def time_transform_multi_key4(self):
self.df4.groupby(['jim', 'joe'])['jolie'].transform('max')
np.random.seed(0)
N = 120000
N_TRANSITIONS = 1400
transition_points = np.random.permutation(np.arange(N))[:N_TRANSITIONS]
transition_points.sort()
transitions = np.zeros((N,), dtype=np.bool)
transitions[transition_points] = True
g = transitions.cumsum()
df = DataFrame({'signal': np.random.rand(N), })
class groupby_transform_series(object):
goal_time = 0.2
def setup(self):
np.random.seed(0)
N = 120000
transition_points = np.sort(np.random.choice(np.arange(N), 1400))
transitions = np.zeros((N,), dtype=np.bool)
transitions[transition_points] = True
self.g = transitions.cumsum()
self.df = DataFrame({'signal': np.random.rand(N)})
def time_groupby_transform_series(self):
self.df['signal'].groupby(self.g).transform(np.mean)
class groupby_transform_series2(object):
goal_time = 0.2
def setup(self):
np.random.seed(0)
self.df = DataFrame({'key': (np.arange(100000) // 3),
'val': np.random.randn(100000)})
self.df_nans = pd.DataFrame({'key': np.repeat(np.arange(1000), 10),
'B': np.nan,
'C': np.nan})
self.df_nans.ix[4::10, 'B':'C'] = 5
def time_transform_series2(self):
self.df.groupby('key')['val'].transform(np.mean)
def time_cumprod(self):
self.df.groupby('key').cumprod()
def time_cumsum(self):
self.df.groupby('key').cumsum()
def time_shift(self):
self.df.groupby('key').shift()
def time_transform_dataframe(self):
# GH 12737
self.df_nans.groupby('key').transform('first')