-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path_util.py
139 lines (108 loc) · 3.52 KB
/
_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from numbers import Number
import numpy as np
import pandas as pd
def _as_str(value):
if isinstance(value, (Number, str)):
return str(value)
name = str(getattr(value, 'name', '') or '')
if callable(value):
name = value.__name__.replace('<lambda>', '')
if name in ('Open', 'High', 'Low', 'Close'):
name = name[:1]
if len(name) > 10:
name = name[:9] + '…'
return name
def _data_period(df):
"""Return data index period as pd.Timedelta"""
return df.index[:100].to_series().diff().median()
class _Array(np.ndarray):
"""
ndarray extended to supply .name and other arbitrary properties
in ._opts dict.
"""
def __new__(cls, array, name=None, write=False, **kwargs):
obj = np.asarray(array).view(cls)
obj.name = name or array.name
obj._opts = kwargs
if not write:
obj.setflags(write=False)
return obj
def __array_finalize__(self, obj):
if obj is not None:
self.name = getattr(obj, 'name', '')
self._opts = getattr(obj, '_opts', {})
def __bool__(self):
try:
return bool(self[-1])
except IndexError:
return super().__bool__()
def __float__(self):
try:
return float(self[-1])
except IndexError:
return super().__float__()
def to_series(self):
return pd.Series(self, index=self._opts['data'].index, name=self.name)
class _Indicator(_Array):
pass
class _Data:
"""
A data array accessor. Provides access to OHLCV "columns"
as a standard `pd.DataFrame` would, except it's not a DataFrame
and the returned "series" are _not_ `pd.Series` but `np.ndarray`
for performance reasons.
"""
def __init__(self, df):
self.__i = len(df)
self.__pip = None
self.__cache = {}
self.__arrays = {col: _Array(arr, data=self)
for col, arr in df.items()}
# Leave index as Series because pd.Timestamp nicer API to work with
self.__arrays['__index'] = df.index.copy()
def __getitem__(self, item):
return getattr(self, item)
def __getattr__(self, item):
try:
return self.__get_array(item)
except KeyError:
raise KeyError("Column '{}' not in data".format(item)) from None
def _set_length(self, i):
self.__i = i
self.__cache.clear()
def __len__(self):
return self.__i
@property
def pip(self):
if self.__pip is None:
self.__pip = 10**-np.median([len(s.partition('.')[-1])
for s in self.__arrays['Close'].astype(str)])
return self.__pip
def __get_array(self, key):
arr = self.__cache.get(key)
if arr is None:
arr = self.__cache[key] = self.__arrays[key][:self.__i]
return arr
@property
def Open(self):
return self.__get_array('Open')
@property
def High(self):
return self.__get_array('High')
@property
def Low(self):
return self.__get_array('Low')
@property
def Close(self):
return self.__get_array('Close')
@property
def Volume(self):
return self.__get_array('Volume')
@property
def index(self):
return self.__get_array('__index')
# Make pickling in Backtest.optimize() work with our catch-all __getattr__
def __getstate__(self):
return self.__dict__
def __setstate__(self, state):
self.__dict__ = state