|
| 1 | +# https://en.wikipedia.org/wiki/B%C3%A9zier_curve |
| 2 | +# https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm |
| 3 | + |
| 4 | +from typing import List, Tuple |
| 5 | +from scipy.special import comb |
| 6 | + |
| 7 | + |
| 8 | +class BezierCurve: |
| 9 | + """ |
| 10 | + Bezier curve is a weighted sum of a set of control points. |
| 11 | + Generate Bezier curves from a given set of control points. |
| 12 | + This implementation works only for 2d coordinates in the xy plane. |
| 13 | + """ |
| 14 | + |
| 15 | + def __init__(self, list_of_points: List[Tuple[float, float]]): |
| 16 | + """ |
| 17 | + list_of_points: Control points in the xy plane on which to interpolate. These |
| 18 | + points control the behavior (shape) of the Bezier curve. |
| 19 | + """ |
| 20 | + self.list_of_points = list_of_points |
| 21 | + # Degree determines the flexibility of the curve. |
| 22 | + # Degree = 1 will produce a straight line. |
| 23 | + self.degree = len(list_of_points) - 1 |
| 24 | + |
| 25 | + def basis_function(self, t: float) -> List[float]: |
| 26 | + """ |
| 27 | + The basis function determines the weight of each control point at time t. |
| 28 | + t: time value between 0 and 1 inclusive at which to evaluate the basis of |
| 29 | + the curve. |
| 30 | + returns the x, y values of basis function at time t |
| 31 | +
|
| 32 | + >>> curve = BezierCurve([(1,1), (1,2)]) |
| 33 | + >>> curve.basis_function(0) |
| 34 | + [1.0, 0.0] |
| 35 | + >>> curve.basis_function(1) |
| 36 | + [0.0, 1.0] |
| 37 | + """ |
| 38 | + assert 0 <= t <= 1, "Time t must be between 0 and 1." |
| 39 | + output_values: List[float] = [] |
| 40 | + for i in range(len(self.list_of_points)): |
| 41 | + # basis function for each i |
| 42 | + output_values.append( |
| 43 | + comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t ** i) |
| 44 | + ) |
| 45 | + # the basis must sum up to 1 for it to produce a valid Bezier curve. |
| 46 | + assert round(sum(output_values), 5) == 1 |
| 47 | + return output_values |
| 48 | + |
| 49 | + def bezier_curve_function(self, t: float) -> Tuple[float, float]: |
| 50 | + """ |
| 51 | + The function to produce the values of the Bezier curve at time t. |
| 52 | + t: the value of time t at which to evaluate the Bezier function |
| 53 | + Returns the x, y coordinates of the Bezier curve at time t. |
| 54 | + The first point in the curve is when t = 0. |
| 55 | + The last point in the curve is when t = 1. |
| 56 | +
|
| 57 | + >>> curve = BezierCurve([(1,1), (1,2)]) |
| 58 | + >>> curve.bezier_curve_function(0) |
| 59 | + (1.0, 1.0) |
| 60 | + >>> curve.bezier_curve_function(1) |
| 61 | + (1.0, 2.0) |
| 62 | + """ |
| 63 | + |
| 64 | + assert 0 <= t <= 1, "Time t must be between 0 and 1." |
| 65 | + |
| 66 | + basis_function = self.basis_function(t) |
| 67 | + x = 0.0 |
| 68 | + y = 0.0 |
| 69 | + for i in range(len(self.list_of_points)): |
| 70 | + # For all points, sum up the product of i-th basis function and i-th point. |
| 71 | + x += basis_function[i] * self.list_of_points[i][0] |
| 72 | + y += basis_function[i] * self.list_of_points[i][1] |
| 73 | + return (x, y) |
| 74 | + |
| 75 | + def plot_curve(self, step_size: float = 0.01): |
| 76 | + """ |
| 77 | + Plots the Bezier curve using matplotlib plotting capabilities. |
| 78 | + step_size: defines the step(s) at which to evaluate the Bezier curve. |
| 79 | + The smaller the step size, the finer the curve produced. |
| 80 | + """ |
| 81 | + import matplotlib.pyplot as plt |
| 82 | + |
| 83 | + to_plot_x: List[float] = [] # x coordinates of points to plot |
| 84 | + to_plot_y: List[float] = [] # y coordinates of points to plot |
| 85 | + |
| 86 | + t = 0.0 |
| 87 | + while t <= 1: |
| 88 | + value = self.bezier_curve_function(t) |
| 89 | + to_plot_x.append(value[0]) |
| 90 | + to_plot_y.append(value[1]) |
| 91 | + t += step_size |
| 92 | + |
| 93 | + x = [i[0] for i in self.list_of_points] |
| 94 | + y = [i[1] for i in self.list_of_points] |
| 95 | + |
| 96 | + plt.plot( |
| 97 | + to_plot_x, |
| 98 | + to_plot_y, |
| 99 | + color="blue", |
| 100 | + label="Curve of Degree " + str(self.degree), |
| 101 | + ) |
| 102 | + plt.scatter(x, y, color="red", label="Control Points") |
| 103 | + plt.legend() |
| 104 | + plt.show() |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == "__main__": |
| 108 | + import doctest |
| 109 | + |
| 110 | + doctest.testmod() |
| 111 | + |
| 112 | + BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 |
| 113 | + BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 |
| 114 | + BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3 |
0 commit comments