forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperiod.py
1334 lines (1099 loc) · 45.4 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=E1101,E1103,W0232
import operator
from datetime import datetime, date
import numpy as np
from pandas.core.base import PandasObject
import pandas.tseries.offsets as offsets
from pandas.tseries.frequencies import (get_freq_code as _gfc,
_month_numbers, FreqGroup)
from pandas.tseries.index import DatetimeIndex, Int64Index, Index
from pandas.tseries.tools import parse_time_string
import pandas.tseries.frequencies as _freq_mod
import pandas.core.common as com
from pandas.core.common import (isnull, _NS_DTYPE, _INT64_DTYPE,
_maybe_box, _values_from_object)
from pandas import compat
from pandas.lib import Timestamp
import pandas.lib as lib
import pandas.tslib as tslib
import pandas.algos as _algos
from pandas.compat import map, zip, u
#---------------
# Period logic
def _period_field_accessor(name, alias):
def f(self):
base, mult = _gfc(self.freq)
return tslib.get_period_field(alias, self.ordinal, base)
f.__name__ = name
return property(f)
def _field_accessor(name, alias):
def f(self):
base, mult = _gfc(self.freq)
return tslib.get_period_field_arr(alias, self.values, base)
f.__name__ = name
return property(f)
class Period(PandasObject):
"""
Represents an period of time
Parameters
----------
value : Period or compat.string_types, default None
The time period represented (e.g., '4Q2005')
freq : str, default None
e.g., 'B' for businessday, ('T', 5) or '5T' for 5 minutes
year : int, default None
month : int, default 1
quarter : int, default None
day : int, default 1
hour : int, default 0
minute : int, default 0
second : int, default 0
"""
__slots__ = ['freq', 'ordinal']
_comparables = ['name','freqstr']
def __init__(self, value=None, freq=None, ordinal=None,
year=None, month=1, quarter=None, day=1,
hour=0, minute=0, second=0):
# freq points to a tuple (base, mult); base is one of the defined
# periods such as A, Q, etc. Every five minutes would be, e.g.,
# ('T', 5) but may be passed in as a string like '5T'
self.freq = None
# ordinal is the period offset from the gregorian proleptic epoch
self.ordinal = None
if ordinal is not None and value is not None:
raise ValueError(("Only value or ordinal but not both should be "
"given but not both"))
elif ordinal is not None:
if not com.is_integer(ordinal):
raise ValueError("Ordinal must be an integer")
if freq is None:
raise ValueError('Must supply freq for ordinal value')
self.ordinal = ordinal
elif value is None:
if freq is None:
raise ValueError("If value is None, freq cannot be None")
self.ordinal = _ordinal_from_fields(year, month, quarter, day,
hour, minute, second, freq)
elif isinstance(value, Period):
other = value
if freq is None or _gfc(freq) == _gfc(other.freq):
self.ordinal = other.ordinal
freq = other.freq
else:
converted = other.asfreq(freq)
self.ordinal = converted.ordinal
elif isinstance(value, compat.string_types) or com.is_integer(value):
if com.is_integer(value):
value = str(value)
dt, freq = _get_date_and_freq(value, freq)
elif isinstance(value, datetime):
dt = value
if freq is None:
raise ValueError('Must supply freq for datetime value')
elif isinstance(value, date):
dt = datetime(year=value.year, month=value.month, day=value.day)
if freq is None:
raise ValueError('Must supply freq for datetime value')
else:
msg = "Value must be Period, string, integer, or datetime"
raise ValueError(msg)
base, mult = _gfc(freq)
if mult != 1:
# TODO: Better error message - this is slightly confusing
raise ValueError('Only mult == 1 supported')
if self.ordinal is None:
self.ordinal = tslib.period_ordinal(dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
base)
self.freq = _freq_mod._get_freq_str(base)
def __eq__(self, other):
if isinstance(other, Period):
if other.freq != self.freq:
raise ValueError("Cannot compare non-conforming periods")
return (self.ordinal == other.ordinal
and _gfc(self.freq) == _gfc(other.freq))
else:
raise TypeError(other)
return False
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash((self.ordinal, self.freq))
def __add__(self, other):
if com.is_integer(other):
return Period(ordinal=self.ordinal + other, freq=self.freq)
else: # pragma: no cover
raise TypeError(other)
def __sub__(self, other):
if com.is_integer(other):
return Period(ordinal=self.ordinal - other, freq=self.freq)
if isinstance(other, Period):
if other.freq != self.freq:
raise ValueError("Cannot do arithmetic with "
"non-conforming periods")
return self.ordinal - other.ordinal
else: # pragma: no cover
raise TypeError(other)
def _comp_method(func, name):
def f(self, other):
if isinstance(other, Period):
if other.freq != self.freq:
raise ValueError("Cannot compare non-conforming periods")
return func(self.ordinal, other.ordinal)
else:
raise TypeError(other)
f.__name__ = name
return f
__lt__ = _comp_method(operator.lt, '__lt__')
__le__ = _comp_method(operator.le, '__le__')
__gt__ = _comp_method(operator.gt, '__gt__')
__ge__ = _comp_method(operator.ge, '__ge__')
def asfreq(self, freq, how='E'):
"""
Convert Period to desired frequency, either at the start or end of the
interval
Parameters
----------
freq : string
how : {'E', 'S', 'end', 'start'}, default 'end'
Start or end of the timespan
Returns
-------
resampled : Period
"""
how = _validate_end_alias(how)
base1, mult1 = _gfc(self.freq)
base2, mult2 = _gfc(freq)
if mult2 != 1:
raise ValueError('Only mult == 1 supported')
end = how == 'E'
new_ordinal = tslib.period_asfreq(self.ordinal, base1, base2, end)
return Period(ordinal=new_ordinal, freq=base2)
@property
def start_time(self):
return self.to_timestamp(how='S')
@property
def end_time(self):
ordinal = (self + 1).start_time.value - 1
return Timestamp(ordinal)
def to_timestamp(self, freq=None, how='start',tz=None):
"""
Return the Timestamp representation of the Period at the target
frequency at the specified end (how) of the Period
Parameters
----------
freq : string or DateOffset, default is 'D' if self.freq is week or
longer and 'S' otherwise
Target frequency
how: str, default 'S' (start)
'S', 'E'. Can be aliased as case insensitive
'Start', 'Finish', 'Begin', 'End'
Returns
-------
Timestamp
"""
how = _validate_end_alias(how)
if freq is None:
base, mult = _gfc(self.freq)
freq = _freq_mod.get_to_timestamp_base(base)
base, mult = _gfc(freq)
val = self.asfreq(freq, how)
dt64 = tslib.period_ordinal_to_dt64(val.ordinal, base)
return Timestamp(dt64,tz=tz)
year = _period_field_accessor('year', 0)
month = _period_field_accessor('month', 3)
day = _period_field_accessor('day', 4)
hour = _period_field_accessor('hour', 5)
minute = _period_field_accessor('minute', 6)
second = _period_field_accessor('second', 7)
weekofyear = _period_field_accessor('week', 8)
week = weekofyear
dayofweek = _period_field_accessor('dayofweek', 10)
weekday = dayofweek
dayofyear = _period_field_accessor('dayofyear', 9)
quarter = _period_field_accessor('quarter', 2)
qyear = _period_field_accessor('qyear', 1)
@classmethod
def now(cls, freq=None):
return Period(datetime.now(), freq=freq)
def __repr__(self):
base, mult = _gfc(self.freq)
formatted = tslib.period_format(self.ordinal, base)
freqstr = _freq_mod._reverse_period_code_map[base]
if not compat.PY3:
encoding = com.get_option("display.encoding")
formatted = formatted.encode(encoding)
return "Period('%s', '%s')" % (formatted, freqstr)
def __unicode__(self):
"""
Return a string representation for a particular DataFrame
Invoked by unicode(df) in py2 only. Yields a Unicode String in both
py2/py3.
"""
base, mult = _gfc(self.freq)
formatted = tslib.period_format(self.ordinal, base)
value = ("%s" % formatted)
return value
def strftime(self, fmt):
"""
Returns the string representation of the :class:`Period`, depending
on the selected :keyword:`format`. :keyword:`format` must be a string
containing one or several directives. The method recognizes the same
directives as the :func:`time.strftime` function of the standard Python
distribution, as well as the specific additional directives ``%f``,
``%F``, ``%q``. (formatting & docs originally from scikits.timeries)
+-----------+--------------------------------+-------+
| Directive | Meaning | Notes |
+===========+================================+=======+
| ``%a`` | Locale's abbreviated weekday | |
| | name. | |
+-----------+--------------------------------+-------+
| ``%A`` | Locale's full weekday name. | |
+-----------+--------------------------------+-------+
| ``%b`` | Locale's abbreviated month | |
| | name. | |
+-----------+--------------------------------+-------+
| ``%B`` | Locale's full month name. | |
+-----------+--------------------------------+-------+
| ``%c`` | Locale's appropriate date and | |
| | time representation. | |
+-----------+--------------------------------+-------+
| ``%d`` | Day of the month as a decimal | |
| | number [01,31]. | |
+-----------+--------------------------------+-------+
| ``%f`` | 'Fiscal' year without a | \(1) |
| | century as a decimal number | |
| | [00,99] | |
+-----------+--------------------------------+-------+
| ``%F`` | 'Fiscal' year with a century | \(2) |
| | as a decimal number | |
+-----------+--------------------------------+-------+
| ``%H`` | Hour (24-hour clock) as a | |
| | decimal number [00,23]. | |
+-----------+--------------------------------+-------+
| ``%I`` | Hour (12-hour clock) as a | |
| | decimal number [01,12]. | |
+-----------+--------------------------------+-------+
| ``%j`` | Day of the year as a decimal | |
| | number [001,366]. | |
+-----------+--------------------------------+-------+
| ``%m`` | Month as a decimal number | |
| | [01,12]. | |
+-----------+--------------------------------+-------+
| ``%M`` | Minute as a decimal number | |
| | [00,59]. | |
+-----------+--------------------------------+-------+
| ``%p`` | Locale's equivalent of either | \(3) |
| | AM or PM. | |
+-----------+--------------------------------+-------+
| ``%q`` | Quarter as a decimal number | |
| | [01,04] | |
+-----------+--------------------------------+-------+
| ``%S`` | Second as a decimal number | \(4) |
| | [00,61]. | |
+-----------+--------------------------------+-------+
| ``%U`` | Week number of the year | \(5) |
| | (Sunday as the first day of | |
| | the week) as a decimal number | |
| | [00,53]. All days in a new | |
| | year preceding the first | |
| | Sunday are considered to be in | |
| | week 0. | |
+-----------+--------------------------------+-------+
| ``%w`` | Weekday as a decimal number | |
| | [0(Sunday),6]. | |
+-----------+--------------------------------+-------+
| ``%W`` | Week number of the year | \(5) |
| | (Monday as the first day of | |
| | the week) as a decimal number | |
| | [00,53]. All days in a new | |
| | year preceding the first | |
| | Monday are considered to be in | |
| | week 0. | |
+-----------+--------------------------------+-------+
| ``%x`` | Locale's appropriate date | |
| | representation. | |
+-----------+--------------------------------+-------+
| ``%X`` | Locale's appropriate time | |
| | representation. | |
+-----------+--------------------------------+-------+
| ``%y`` | Year without century as a | |
| | decimal number [00,99]. | |
+-----------+--------------------------------+-------+
| ``%Y`` | Year with century as a decimal | |
| | number. | |
+-----------+--------------------------------+-------+
| ``%Z`` | Time zone name (no characters | |
| | if no time zone exists). | |
+-----------+--------------------------------+-------+
| ``%%`` | A literal ``'%'`` character. | |
+-----------+--------------------------------+-------+
.. note::
(1)
The ``%f`` directive is the same as ``%y`` if the frequency is
not quarterly.
Otherwise, it corresponds to the 'fiscal' year, as defined by
the :attr:`qyear` attribute.
(2)
The ``%F`` directive is the same as ``%Y`` if the frequency is
not quarterly.
Otherwise, it corresponds to the 'fiscal' year, as defined by
the :attr:`qyear` attribute.
(3)
The ``%p`` directive only affects the output hour field
if the ``%I`` directive is used to parse the hour.
(4)
The range really is ``0`` to ``61``; this accounts for leap
seconds and the (very rare) double leap seconds.
(5)
The ``%U`` and ``%W`` directives are only used in calculations
when the day of the week and the year are specified.
.. rubric:: Examples
>>> a = Period(freq='Q@JUL', year=2006, quarter=1)
>>> a.strftime('%F-Q%q')
'2006-Q1'
>>> # Output the last month in the quarter of this date
>>> a.strftime('%b-%Y')
'Oct-2005'
>>>
>>> a = Period(freq='D', year=2001, month=1, day=1)
>>> a.strftime('%d-%b-%Y')
'01-Jan-2006'
>>> a.strftime('%b. %d, %Y was a %A')
'Jan. 01, 2001 was a Monday'
"""
base, mult = _gfc(self.freq)
return tslib.period_format(self.ordinal, base, fmt)
def _get_date_and_freq(value, freq):
value = value.upper()
dt, _, reso = parse_time_string(value, freq)
if freq is None:
if reso == 'year':
freq = 'A'
elif reso == 'quarter':
freq = 'Q'
elif reso == 'month':
freq = 'M'
elif reso == 'day':
freq = 'D'
elif reso == 'hour':
freq = 'H'
elif reso == 'minute':
freq = 'T'
elif reso == 'second':
freq = 'S'
else:
raise ValueError("Invalid frequency or could not infer: %s" % reso)
return dt, freq
def _get_ordinals(data, freq):
f = lambda x: Period(x, freq=freq).ordinal
if isinstance(data[0], Period):
return tslib.extract_ordinals(data, freq)
else:
return lib.map_infer(data, f)
def dt64arr_to_periodarr(data, freq, tz):
if data.dtype != np.dtype('M8[ns]'):
raise ValueError('Wrong dtype: %s' % data.dtype)
base, mult = _gfc(freq)
return tslib.dt64arr_to_periodarr(data.view('i8'), base, tz)
# --- Period index sketch
def _period_index_cmp(opname):
"""
Wrap comparison operations to convert datetime-like to datetime64
"""
def wrapper(self, other):
if isinstance(other, Period):
func = getattr(self.values, opname)
if not (other.freq == self.freq):
raise AssertionError()
result = func(other.ordinal)
elif isinstance(other, PeriodIndex):
if not (other.freq == self.freq):
raise AssertionError()
return getattr(self.values, opname)(other.values)
else:
other = Period(other, freq=self.freq)
func = getattr(self.values, opname)
result = func(other.ordinal)
return result
return wrapper
class PeriodIndex(Int64Index):
"""
Immutable ndarray holding ordinal values indicating regular periods in
time such as particular years, quarters, months, etc. A value of 1 is the
period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00.
This ordinal representation is from the scikits.timeseries project.
For instance,
# construct period for day 1/1/1 and get the first second
i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S')
i.ordinal
===> 1
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
Parameters
----------
data : array-like (1-dimensional), optional
Optional period-like data to construct index with
dtype : NumPy dtype (default: i8)
copy : bool
Make a copy of input ndarray
freq : string or period object, optional
One of pandas period strings or corresponding objects
start : starting value, period-like, optional
If data is None, used as the start point in generating regular
period data.
periods : int, optional, > 0
Number of periods to generate, if generating index. Takes precedence
over end argument
end : end value, period-like, optional
If periods is none, generated index will extend to first conforming
period on or just past end argument
year : int or array, default None
month : int or array, default None
quarter : int or array, default None
day : int or array, default None
hour : int or array, default None
minute : int or array, default None
second : int or array, default None
tz : object, default None
Timezone for converting datetime64 data to Periods
Examples
--------
>>> idx = PeriodIndex(year=year_arr, quarter=q_arr)
>>> idx2 = PeriodIndex(start='2000', end='2010', freq='A')
"""
_box_scalars = True
__eq__ = _period_index_cmp('__eq__')
__ne__ = _period_index_cmp('__ne__')
__lt__ = _period_index_cmp('__lt__')
__gt__ = _period_index_cmp('__gt__')
__le__ = _period_index_cmp('__le__')
__ge__ = _period_index_cmp('__ge__')
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
periods=None, copy=False, name=None, year=None, month=None,
quarter=None, day=None, hour=None, minute=None, second=None,
tz=None):
freq = _freq_mod.get_standard_freq(freq)
if periods is not None:
if com.is_float(periods):
periods = int(periods)
elif not com.is_integer(periods):
raise ValueError('Periods must be a number, got %s' %
str(periods))
if data is None:
if ordinal is not None:
data = np.asarray(ordinal, dtype=np.int64)
else:
fields = [year, month, quarter, day, hour, minute, second]
data, freq = cls._generate_range(start, end, periods,
freq, fields)
else:
ordinal, freq = cls._from_arraylike(data, freq, tz)
data = np.array(ordinal, dtype=np.int64, copy=False)
subarr = data.view(cls)
subarr.name = name
subarr.freq = freq
return subarr
@classmethod
def _generate_range(cls, start, end, periods, freq, fields):
field_count = com._count_not_none(*fields)
if com._count_not_none(start, end) > 0:
if field_count > 0:
raise ValueError('Can either instantiate from fields '
'or endpoints, but not both')
subarr, freq = _get_ordinal_range(start, end, periods, freq)
elif field_count > 0:
y, mth, q, d, h, minute, s = fields
subarr, freq = _range_from_fields(year=y, month=mth, quarter=q,
day=d, hour=h, minute=minute,
second=s, freq=freq)
else:
raise ValueError('Not enough parameters to construct '
'Period range')
return subarr, freq
@classmethod
def _from_arraylike(cls, data, freq, tz):
if not isinstance(data, np.ndarray):
if np.isscalar(data) or isinstance(data, Period):
raise ValueError('PeriodIndex() must be called with a '
'collection of some kind, %s was passed'
% repr(data))
# other iterable of some kind
if not isinstance(data, (list, tuple)):
data = list(data)
try:
data = com._ensure_int64(data)
if freq is None:
raise ValueError('freq not specified')
data = np.array([Period(x, freq=freq).ordinal for x in data],
dtype=np.int64)
except (TypeError, ValueError):
data = com._ensure_object(data)
if freq is None and len(data) > 0:
freq = getattr(data[0], 'freq', None)
if freq is None:
raise ValueError('freq not specified and cannot be '
'inferred from first element')
data = _get_ordinals(data, freq)
else:
if isinstance(data, PeriodIndex):
if freq is None or freq == data.freq:
freq = data.freq
data = data.values
else:
base1, _ = _gfc(data.freq)
base2, _ = _gfc(freq)
data = tslib.period_asfreq_arr(data.values, base1,
base2, 1)
else:
if freq is None and len(data) > 0:
freq = getattr(data[0], 'freq', None)
if freq is None:
raise ValueError('freq not specified and cannot be '
'inferred from first element')
if data.dtype != np.int64:
if np.issubdtype(data.dtype, np.datetime64):
data = dt64arr_to_periodarr(data, freq, tz)
else:
try:
data = com._ensure_int64(data)
except (TypeError, ValueError):
data = com._ensure_object(data)
data = _get_ordinals(data, freq)
return data, freq
def __contains__(self, key):
if not isinstance(key, Period) or key.freq != self.freq:
if isinstance(key, compat.string_types):
try:
self.get_loc(key)
return True
except Exception:
return False
return False
return key.ordinal in self._engine
def _box_values(self, values):
f = lambda x: Period(ordinal=x, freq=self.freq)
return lib.map_infer(values, f)
def asof_locs(self, where, mask):
"""
where : array of timestamps
mask : array of booleans where data is not NA
"""
where_idx = where
if isinstance(where_idx, DatetimeIndex):
where_idx = PeriodIndex(where_idx.values, freq=self.freq)
locs = self.values[mask].searchsorted(where_idx.values, side='right')
locs = np.where(locs > 0, locs - 1, 0)
result = np.arange(len(self))[mask].take(locs)
first = mask.argmax()
result[(locs == 0) & (where_idx.values < self.values[first])] = -1
return result
@property
def asobject(self):
from pandas.core.index import Index
return Index(self._box_values(self.values), dtype=object)
def _array_values(self):
return self.asobject
def astype(self, dtype):
dtype = np.dtype(dtype)
if dtype == np.object_:
result = np.empty(len(self), dtype=dtype)
result[:] = [x for x in self]
return result
elif dtype == _INT64_DTYPE:
return self.values.copy()
else: # pragma: no cover
raise ValueError('Cannot cast PeriodIndex to dtype %s' % dtype)
def __iter__(self):
for val in self.values:
yield Period(ordinal=val, freq=self.freq)
@property
def is_all_dates(self):
return True
@property
def is_full(self):
"""
Returns True if there are any missing periods from start to end
"""
if len(self) == 0:
return True
if not self.is_monotonic:
raise ValueError('Index is not monotonic')
values = self.values
return ((values[1:] - values[:-1]) < 2).all()
def factorize(self):
"""
Specialized factorize that boxes uniques
"""
from pandas.core.algorithms import factorize
labels, uniques = factorize(self.values)
uniques = PeriodIndex(ordinal=uniques, freq=self.freq)
return labels, uniques
@property
def freqstr(self):
return self.freq
def asfreq(self, freq=None, how='E'):
how = _validate_end_alias(how)
freq = _freq_mod.get_standard_freq(freq)
base1, mult1 = _gfc(self.freq)
base2, mult2 = _gfc(freq)
if mult2 != 1:
raise ValueError('Only mult == 1 supported')
end = how == 'E'
new_data = tslib.period_asfreq_arr(self.values, base1, base2, end)
result = new_data.view(PeriodIndex)
result.name = self.name
result.freq = freq
return result
def to_datetime(self, dayfirst=False):
return self.to_timestamp()
year = _field_accessor('year', 0)
month = _field_accessor('month', 3)
day = _field_accessor('day', 4)
hour = _field_accessor('hour', 5)
minute = _field_accessor('minute', 6)
second = _field_accessor('second', 7)
weekofyear = _field_accessor('week', 8)
week = weekofyear
dayofweek = _field_accessor('dayofweek', 10)
weekday = dayofweek
dayofyear = day_of_year = _field_accessor('dayofyear', 9)
quarter = _field_accessor('quarter', 2)
qyear = _field_accessor('qyear', 1)
# Try to run function on index first, and then on elements of index
# Especially important for group-by functionality
def map(self, f):
try:
result = f(self)
if not isinstance(result, np.ndarray):
raise TypeError
return result
except Exception:
return _algos.arrmap_object(self.asobject, f)
def _get_object_array(self):
freq = self.freq
boxfunc = lambda x: Period(ordinal=x, freq=freq)
boxer = np.frompyfunc(boxfunc, 1, 1)
return boxer(self.values)
def _mpl_repr(self):
# how to represent ourselves to matplotlib
return self._get_object_array()
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self.is_(other):
return True
return np.array_equal(self.asi8, other.asi8)
def tolist(self):
"""
Return a list of Period objects
"""
return self._get_object_array().tolist()
def to_timestamp(self, freq=None, how='start'):
"""
Cast to DatetimeIndex
Parameters
----------
freq : string or DateOffset, default 'D' for week or longer, 'S'
otherwise
Target frequency
how : {'s', 'e', 'start', 'end'}
Returns
-------
DatetimeIndex
"""
how = _validate_end_alias(how)
if freq is None:
base, mult = _gfc(self.freq)
freq = _freq_mod.get_to_timestamp_base(base)
base, mult = _gfc(freq)
new_data = self.asfreq(freq, how)
new_data = tslib.periodarr_to_dt64arr(new_data.values, base)
return DatetimeIndex(new_data, freq='infer', name=self.name)
def shift(self, n):
"""
Specialized shift which produces an PeriodIndex
Parameters
----------
n : int
Periods to shift by
freq : freq string
Returns
-------
shifted : PeriodIndex
"""
if n == 0:
return self
return PeriodIndex(data=self.values + n, freq=self.freq)
def __add__(self, other):
return PeriodIndex(ordinal=self.values + other, freq=self.freq)
def __sub__(self, other):
return PeriodIndex(ordinal=self.values - other, freq=self.freq)
@property
def inferred_type(self):
# b/c data is represented as ints make sure we can't have ambiguous
# indexing
return 'period'
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
s = _values_from_object(series)
try:
return _maybe_box(self, super(PeriodIndex, self).get_value(s, key), series, key)
except (KeyError, IndexError):
try:
asdt, parsed, reso = parse_time_string(key, self.freq)
grp = _freq_mod._infer_period_group(reso)
freqn = _freq_mod._period_group(self.freq)
vals = self.values
# if our data is higher resolution than requested key, slice
if grp < freqn:
iv = Period(asdt, freq=(grp, 1))
ord1 = iv.asfreq(self.freq, how='S').ordinal
ord2 = iv.asfreq(self.freq, how='E').ordinal
if ord2 < vals[0] or ord1 > vals[-1]:
raise KeyError(key)
pos = np.searchsorted(self.values, [ord1, ord2])
key = slice(pos[0], pos[1] + 1)
return series[key]
else:
key = Period(asdt, freq=self.freq).ordinal
return _maybe_box(self, self._engine.get_value(s, key), series, key)
except TypeError:
pass
except KeyError:
pass
key = Period(key, self.freq).ordinal
return _maybe_box(self, self._engine.get_value(s, key), series, key)
def get_loc(self, key):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
try:
return self._engine.get_loc(key)
except KeyError:
try:
asdt, parsed, reso = parse_time_string(key, self.freq)
key = asdt
except TypeError:
pass
key = Period(key, self.freq)
try:
return self._engine.get_loc(key.ordinal)
except KeyError as inst:
raise KeyError(key)
def slice_locs(self, start=None, end=None):
"""
Index.slice_locs, customized to handle partial ISO-8601 string slicing
"""
if isinstance(start, compat.string_types) or isinstance(end, compat.string_types):
try:
if start:
start_loc = self._get_string_slice(start).start
else:
start_loc = 0
if end:
end_loc = self._get_string_slice(end).stop
else:
end_loc = len(self)
return start_loc, end_loc
except KeyError:
pass
if isinstance(start, datetime) and isinstance(end, datetime):
ordinals = self.values
t1 = Period(start, freq=self.freq)
t2 = Period(end, freq=self.freq)
left = ordinals.searchsorted(t1.ordinal, side='left')
right = ordinals.searchsorted(t2.ordinal, side='right')
return left, right
return Int64Index.slice_locs(self, start, end)
def _get_string_slice(self, key):
if not self.is_monotonic:
raise ValueError('Partial indexing only valid for '
'ordered time series')
asdt, parsed, reso = parse_time_string(key, self.freq)
key = asdt
if reso == 'year':
t1 = Period(year=parsed.year, freq='A')
elif reso == 'month':
t1 = Period(year=parsed.year, month=parsed.month, freq='M')
elif reso == 'quarter':
q = (parsed.month - 1) // 3 + 1
t1 = Period(year=parsed.year, quarter=q, freq='Q-DEC')
else:
raise KeyError(key)
ordinals = self.values
t2 = t1.asfreq(self.freq, how='end')
t1 = t1.asfreq(self.freq, how='start')
left = ordinals.searchsorted(t1.ordinal, side='left')