|
| 1 | +from itertools import product |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +from pandas import DataFrame, Series |
| 7 | +from pandas.core.base import DataError |
| 8 | +import pandas.util.testing as tm |
| 9 | + |
| 10 | +# gh-12373 : rolling functions error on float32 data |
| 11 | +# make sure rolling functions works for different dtypes |
| 12 | +# |
| 13 | +# NOTE that these are yielded tests and so _create_data |
| 14 | +# is explicitly called. |
| 15 | +# |
| 16 | +# further note that we are only checking rolling for fully dtype |
| 17 | +# compliance (though both expanding and ewm inherit) |
| 18 | + |
| 19 | + |
| 20 | +class Dtype: |
| 21 | + window = 2 |
| 22 | + |
| 23 | + funcs = { |
| 24 | + "count": lambda v: v.count(), |
| 25 | + "max": lambda v: v.max(), |
| 26 | + "min": lambda v: v.min(), |
| 27 | + "sum": lambda v: v.sum(), |
| 28 | + "mean": lambda v: v.mean(), |
| 29 | + "std": lambda v: v.std(), |
| 30 | + "var": lambda v: v.var(), |
| 31 | + "median": lambda v: v.median(), |
| 32 | + } |
| 33 | + |
| 34 | + def get_expects(self): |
| 35 | + expects = { |
| 36 | + "sr1": { |
| 37 | + "count": Series([1, 2, 2, 2, 2], dtype="float64"), |
| 38 | + "max": Series([np.nan, 1, 2, 3, 4], dtype="float64"), |
| 39 | + "min": Series([np.nan, 0, 1, 2, 3], dtype="float64"), |
| 40 | + "sum": Series([np.nan, 1, 3, 5, 7], dtype="float64"), |
| 41 | + "mean": Series([np.nan, 0.5, 1.5, 2.5, 3.5], dtype="float64"), |
| 42 | + "std": Series([np.nan] + [np.sqrt(0.5)] * 4, dtype="float64"), |
| 43 | + "var": Series([np.nan, 0.5, 0.5, 0.5, 0.5], dtype="float64"), |
| 44 | + "median": Series([np.nan, 0.5, 1.5, 2.5, 3.5], dtype="float64"), |
| 45 | + }, |
| 46 | + "sr2": { |
| 47 | + "count": Series([1, 2, 2, 2, 2], dtype="float64"), |
| 48 | + "max": Series([np.nan, 10, 8, 6, 4], dtype="float64"), |
| 49 | + "min": Series([np.nan, 8, 6, 4, 2], dtype="float64"), |
| 50 | + "sum": Series([np.nan, 18, 14, 10, 6], dtype="float64"), |
| 51 | + "mean": Series([np.nan, 9, 7, 5, 3], dtype="float64"), |
| 52 | + "std": Series([np.nan] + [np.sqrt(2)] * 4, dtype="float64"), |
| 53 | + "var": Series([np.nan, 2, 2, 2, 2], dtype="float64"), |
| 54 | + "median": Series([np.nan, 9, 7, 5, 3], dtype="float64"), |
| 55 | + }, |
| 56 | + "df": { |
| 57 | + "count": DataFrame( |
| 58 | + {0: Series([1, 2, 2, 2, 2]), 1: Series([1, 2, 2, 2, 2])}, |
| 59 | + dtype="float64", |
| 60 | + ), |
| 61 | + "max": DataFrame( |
| 62 | + {0: Series([np.nan, 2, 4, 6, 8]), 1: Series([np.nan, 3, 5, 7, 9])}, |
| 63 | + dtype="float64", |
| 64 | + ), |
| 65 | + "min": DataFrame( |
| 66 | + {0: Series([np.nan, 0, 2, 4, 6]), 1: Series([np.nan, 1, 3, 5, 7])}, |
| 67 | + dtype="float64", |
| 68 | + ), |
| 69 | + "sum": DataFrame( |
| 70 | + { |
| 71 | + 0: Series([np.nan, 2, 6, 10, 14]), |
| 72 | + 1: Series([np.nan, 4, 8, 12, 16]), |
| 73 | + }, |
| 74 | + dtype="float64", |
| 75 | + ), |
| 76 | + "mean": DataFrame( |
| 77 | + {0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])}, |
| 78 | + dtype="float64", |
| 79 | + ), |
| 80 | + "std": DataFrame( |
| 81 | + { |
| 82 | + 0: Series([np.nan] + [np.sqrt(2)] * 4), |
| 83 | + 1: Series([np.nan] + [np.sqrt(2)] * 4), |
| 84 | + }, |
| 85 | + dtype="float64", |
| 86 | + ), |
| 87 | + "var": DataFrame( |
| 88 | + {0: Series([np.nan, 2, 2, 2, 2]), 1: Series([np.nan, 2, 2, 2, 2])}, |
| 89 | + dtype="float64", |
| 90 | + ), |
| 91 | + "median": DataFrame( |
| 92 | + {0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])}, |
| 93 | + dtype="float64", |
| 94 | + ), |
| 95 | + }, |
| 96 | + } |
| 97 | + return expects |
| 98 | + |
| 99 | + def _create_dtype_data(self, dtype): |
| 100 | + sr1 = Series(np.arange(5), dtype=dtype) |
| 101 | + sr2 = Series(np.arange(10, 0, -2), dtype=dtype) |
| 102 | + df = DataFrame(np.arange(10).reshape((5, 2)), dtype=dtype) |
| 103 | + |
| 104 | + data = {"sr1": sr1, "sr2": sr2, "df": df} |
| 105 | + |
| 106 | + return data |
| 107 | + |
| 108 | + def _create_data(self): |
| 109 | + self.data = self._create_dtype_data(self.dtype) |
| 110 | + self.expects = self.get_expects() |
| 111 | + |
| 112 | + def test_dtypes(self): |
| 113 | + self._create_data() |
| 114 | + for f_name, d_name in product(self.funcs.keys(), self.data.keys()): |
| 115 | + |
| 116 | + f = self.funcs[f_name] |
| 117 | + d = self.data[d_name] |
| 118 | + exp = self.expects[d_name][f_name] |
| 119 | + self.check_dtypes(f, f_name, d, d_name, exp) |
| 120 | + |
| 121 | + def check_dtypes(self, f, f_name, d, d_name, exp): |
| 122 | + roll = d.rolling(window=self.window) |
| 123 | + result = f(roll) |
| 124 | + tm.assert_almost_equal(result, exp) |
| 125 | + |
| 126 | + |
| 127 | +class TestDtype_object(Dtype): |
| 128 | + dtype = object |
| 129 | + |
| 130 | + |
| 131 | +class Dtype_integer(Dtype): |
| 132 | + pass |
| 133 | + |
| 134 | + |
| 135 | +class TestDtype_int8(Dtype_integer): |
| 136 | + dtype = np.int8 |
| 137 | + |
| 138 | + |
| 139 | +class TestDtype_int16(Dtype_integer): |
| 140 | + dtype = np.int16 |
| 141 | + |
| 142 | + |
| 143 | +class TestDtype_int32(Dtype_integer): |
| 144 | + dtype = np.int32 |
| 145 | + |
| 146 | + |
| 147 | +class TestDtype_int64(Dtype_integer): |
| 148 | + dtype = np.int64 |
| 149 | + |
| 150 | + |
| 151 | +class Dtype_uinteger(Dtype): |
| 152 | + pass |
| 153 | + |
| 154 | + |
| 155 | +class TestDtype_uint8(Dtype_uinteger): |
| 156 | + dtype = np.uint8 |
| 157 | + |
| 158 | + |
| 159 | +class TestDtype_uint16(Dtype_uinteger): |
| 160 | + dtype = np.uint16 |
| 161 | + |
| 162 | + |
| 163 | +class TestDtype_uint32(Dtype_uinteger): |
| 164 | + dtype = np.uint32 |
| 165 | + |
| 166 | + |
| 167 | +class TestDtype_uint64(Dtype_uinteger): |
| 168 | + dtype = np.uint64 |
| 169 | + |
| 170 | + |
| 171 | +class Dtype_float(Dtype): |
| 172 | + pass |
| 173 | + |
| 174 | + |
| 175 | +class TestDtype_float16(Dtype_float): |
| 176 | + dtype = np.float16 |
| 177 | + |
| 178 | + |
| 179 | +class TestDtype_float32(Dtype_float): |
| 180 | + dtype = np.float32 |
| 181 | + |
| 182 | + |
| 183 | +class TestDtype_float64(Dtype_float): |
| 184 | + dtype = np.float64 |
| 185 | + |
| 186 | + |
| 187 | +class TestDtype_category(Dtype): |
| 188 | + dtype = "category" |
| 189 | + include_df = False |
| 190 | + |
| 191 | + def _create_dtype_data(self, dtype): |
| 192 | + sr1 = Series(range(5), dtype=dtype) |
| 193 | + sr2 = Series(range(10, 0, -2), dtype=dtype) |
| 194 | + |
| 195 | + data = {"sr1": sr1, "sr2": sr2} |
| 196 | + |
| 197 | + return data |
| 198 | + |
| 199 | + |
| 200 | +class DatetimeLike(Dtype): |
| 201 | + def check_dtypes(self, f, f_name, d, d_name, exp): |
| 202 | + |
| 203 | + roll = d.rolling(window=self.window) |
| 204 | + if f_name == "count": |
| 205 | + result = f(roll) |
| 206 | + tm.assert_almost_equal(result, exp) |
| 207 | + |
| 208 | + else: |
| 209 | + with pytest.raises(DataError): |
| 210 | + f(roll) |
| 211 | + |
| 212 | + |
| 213 | +class TestDtype_timedelta(DatetimeLike): |
| 214 | + dtype = np.dtype("m8[ns]") |
| 215 | + |
| 216 | + |
| 217 | +class TestDtype_datetime(DatetimeLike): |
| 218 | + dtype = np.dtype("M8[ns]") |
| 219 | + |
| 220 | + |
| 221 | +class TestDtype_datetime64UTC(DatetimeLike): |
| 222 | + dtype = "datetime64[ns, UTC]" |
| 223 | + |
| 224 | + def _create_data(self): |
| 225 | + pytest.skip( |
| 226 | + "direct creation of extension dtype " |
| 227 | + "datetime64[ns, UTC] is not supported ATM" |
| 228 | + ) |
0 commit comments