You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
``pd.TimeSeries`` was deprecated officially in 0.17.0, though has only been an alias since 0.13.0. It has
292
-
been dropped in favor of ``pd.Series``. (:issue:``15098).
292
+
been dropped in favor of ``pd.Series``. (:issue:`15098`).
293
293
294
294
This *may* cause HDF5 files that were created in prior versions to become unreadable if ``pd.TimeSeries``
295
295
was used. This is most likely to be for pandas < 0.13.0. If you find yourself in this situation.
@@ -328,68 +328,66 @@ then write them out again after applying the procedure below.
328
328
Map on Index types now return other Index types
329
329
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
330
330
331
-
- ``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
331
+
``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
332
332
333
-
.. ipython:: python
334
-
335
-
idx = Index([1, 2])
336
-
idx
337
-
mi = MultiIndex.from_tuples([(1, 2), (2, 4)])
338
-
mi
339
-
340
-
Previous Behavior:
333
+
.. ipython:: python
341
334
342
-
.. code-block:: ipython
335
+
idx = Index([1, 2])
336
+
idx
337
+
mi = MultiIndex.from_tuples([(1, 2), (2, 4)])
338
+
mi
343
339
344
-
In [5]: idx.map(lambda x: x * 2)
345
-
Out[5]: array([2, 4])
340
+
Previous Behavior:
346
341
347
-
In [6]: idx.map(lambda x: (x, x * 2))
348
-
Out[6]: array([(1, 2), (2, 4)], dtype=object)
342
+
.. code-block:: ipython
349
343
350
-
In [7]: mi.map(lambda x: x)
351
-
Out[7]: array([(1, 2), (2, 4)], dtype=object)
344
+
In [5]: idx.map(lambda x: x * 2)
345
+
Out[5]: array([2, 4])
352
346
353
-
In [8]: mi.map(lambda x: x[0])
354
-
Out[8]: array([1, 2])
347
+
In [6]: idx.map(lambda x: (x, x * 2))
348
+
Out[6]: array([(1, 2), (2, 4)], dtype=object)
355
349
356
-
New Behavior:
350
+
In [7]: mi.map(lambda x: x)
351
+
Out[7]: array([(1, 2), (2, 4)], dtype=object)
357
352
358
-
.. ipython:: python
353
+
In [8]: mi.map(lambda x: x[0])
354
+
Out[8]: array([1, 2])
359
355
360
-
idx.map(lambda x: x * 2)
356
+
New Behavior:
361
357
362
-
idx.map(lambda x: (x, x * 2))
358
+
.. ipython:: python
363
359
364
-
mi.map(lambda x: x)
360
+
idx.map(lambda x: x * 2)
361
+
idx.map(lambda x: (x, x * 2))
365
362
366
-
mi.map(lambda x: x[0])
363
+
mi.map(lambda x: x)
367
364
365
+
mi.map(lambda x: x[0])
368
366
369
-
- ``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
370
367
371
-
.. ipython:: python
368
+
``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
372
369
373
-
s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))
374
-
s
370
+
.. ipython:: python
375
371
376
-
Previous Behavior:
372
+
s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))
373
+
s
377
374
378
-
.. code-block:: ipython
375
+
Previous Behavior:
379
376
380
-
In [9]: s.map(lambda x: x.hour)
381
-
Out[9]:
382
-
0 0
383
-
1 1
384
-
2 2
385
-
dtype: int32
377
+
.. code-block:: ipython
386
378
379
+
In [9]: s.map(lambda x: x.hour)
380
+
Out[9]:
381
+
0 0
382
+
1 1
383
+
2 2
384
+
dtype: int32
387
385
388
-
New Behavior:
386
+
New Behavior:
389
387
390
-
.. ipython:: python
388
+
.. ipython:: python
391
389
392
-
s.map(lambda x: x.hour)
390
+
s.map(lambda x: x.hour)
393
391
394
392
.. _whatsnew_0200.api_breaking.s3:
395
393
@@ -443,8 +441,8 @@ Pandas Google BigQuery support has moved
443
441
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
444
442
445
443
pandas has split off Google BigQuery support into a separate package ``pandas-gbq``. You can ``pip install pandas-gbq`` to get it.
446
-
The functionality of ``pd.read_gbq()`` and ``.to_gbq()`` remains the same with the currently released version of ``pandas-gbq=0.1.3``. (:issue:`15347`)
447
-
Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__
444
+
The functionality of :func:`read_gbq` and :meth:`DataFrame.to_gbq` remain the same with the currently released version of ``pandas-gbq=0.1.3``.
445
+
Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__ (:issue:`15347`)
448
446
449
447
.. _whatsnew_0200.api_breaking.memory_usage:
450
448
@@ -667,7 +665,7 @@ Performance Improvements
667
665
- Improved performance of ``groupby().cummin()`` and ``groupby().cummax()`` (:issue:`15048`, :issue:`15109`, :issue:`15561`)
668
666
- Improved performance and reduced memory when indexing with a ``MultiIndex`` (:issue:`15245`)
669
667
- When reading buffer object in ``read_sas()`` method without specified format, filepath string is inferred rather than buffer object. (:issue:`14947`)
670
-
- Improved performance of `rank()` for categorical data (:issue:`15498`)
668
+
- Improved performance of ``.rank()`` for categorical data (:issue:`15498`)
671
669
- Improved performance when using ``.unstack()`` (:issue:`15503`)
0 commit comments