Skip to content

Commit 3d69988

Browse files
committed
DOC: more whatsnew fixing
1 parent b508a04 commit 3d69988

File tree

1 file changed

+41
-43
lines changed

1 file changed

+41
-43
lines changed

doc/source/whatsnew/v0.20.0.txt

+41-43
Original file line numberDiff line numberDiff line change
@@ -289,7 +289,7 @@ Possible incompat for HDF5 formats for pandas < 0.13.0
289289
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
290290

291291
``pd.TimeSeries`` was deprecated officially in 0.17.0, though has only been an alias since 0.13.0. It has
292-
been dropped in favor of ``pd.Series``. (:issue:``15098).
292+
been dropped in favor of ``pd.Series``. (:issue:`15098`).
293293

294294
This *may* cause HDF5 files that were created in prior versions to become unreadable if ``pd.TimeSeries``
295295
was used. This is most likely to be for pandas < 0.13.0. If you find yourself in this situation.
@@ -328,68 +328,66 @@ then write them out again after applying the procedure below.
328328
Map on Index types now return other Index types
329329
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
330330

331-
- ``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
331+
``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
332332

333-
.. ipython:: python
334-
335-
idx = Index([1, 2])
336-
idx
337-
mi = MultiIndex.from_tuples([(1, 2), (2, 4)])
338-
mi
339-
340-
Previous Behavior:
333+
.. ipython:: python
341334

342-
.. code-block:: ipython
335+
idx = Index([1, 2])
336+
idx
337+
mi = MultiIndex.from_tuples([(1, 2), (2, 4)])
338+
mi
343339

344-
In [5]: idx.map(lambda x: x * 2)
345-
Out[5]: array([2, 4])
340+
Previous Behavior:
346341

347-
In [6]: idx.map(lambda x: (x, x * 2))
348-
Out[6]: array([(1, 2), (2, 4)], dtype=object)
342+
.. code-block:: ipython
349343

350-
In [7]: mi.map(lambda x: x)
351-
Out[7]: array([(1, 2), (2, 4)], dtype=object)
344+
In [5]: idx.map(lambda x: x * 2)
345+
Out[5]: array([2, 4])
352346

353-
In [8]: mi.map(lambda x: x[0])
354-
Out[8]: array([1, 2])
347+
In [6]: idx.map(lambda x: (x, x * 2))
348+
Out[6]: array([(1, 2), (2, 4)], dtype=object)
355349

356-
New Behavior:
350+
In [7]: mi.map(lambda x: x)
351+
Out[7]: array([(1, 2), (2, 4)], dtype=object)
357352

358-
.. ipython:: python
353+
In [8]: mi.map(lambda x: x[0])
354+
Out[8]: array([1, 2])
359355

360-
idx.map(lambda x: x * 2)
356+
New Behavior:
361357

362-
idx.map(lambda x: (x, x * 2))
358+
.. ipython:: python
363359

364-
mi.map(lambda x: x)
360+
idx.map(lambda x: x * 2)
361+
idx.map(lambda x: (x, x * 2))
365362

366-
mi.map(lambda x: x[0])
363+
mi.map(lambda x: x)
367364

365+
mi.map(lambda x: x[0])
368366

369-
- ``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
370367

371-
.. ipython:: python
368+
``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
372369

373-
s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))
374-
s
370+
.. ipython:: python
375371

376-
Previous Behavior:
372+
s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))
373+
s
377374

378-
.. code-block:: ipython
375+
Previous Behavior:
379376

380-
In [9]: s.map(lambda x: x.hour)
381-
Out[9]:
382-
0 0
383-
1 1
384-
2 2
385-
dtype: int32
377+
.. code-block:: ipython
386378

379+
In [9]: s.map(lambda x: x.hour)
380+
Out[9]:
381+
0 0
382+
1 1
383+
2 2
384+
dtype: int32
387385

388-
New Behavior:
386+
New Behavior:
389387

390-
.. ipython:: python
388+
.. ipython:: python
391389

392-
s.map(lambda x: x.hour)
390+
s.map(lambda x: x.hour)
393391

394392
.. _whatsnew_0200.api_breaking.s3:
395393

@@ -443,8 +441,8 @@ Pandas Google BigQuery support has moved
443441
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
444442

445443
pandas has split off Google BigQuery support into a separate package ``pandas-gbq``. You can ``pip install pandas-gbq`` to get it.
446-
The functionality of ``pd.read_gbq()`` and ``.to_gbq()`` remains the same with the currently released version of ``pandas-gbq=0.1.3``. (:issue:`15347`)
447-
Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__
444+
The functionality of :func:`read_gbq` and :meth:`DataFrame.to_gbq` remain the same with the currently released version of ``pandas-gbq=0.1.3``.
445+
Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__ (:issue:`15347`)
448446

449447
.. _whatsnew_0200.api_breaking.memory_usage:
450448

@@ -667,7 +665,7 @@ Performance Improvements
667665
- Improved performance of ``groupby().cummin()`` and ``groupby().cummax()`` (:issue:`15048`, :issue:`15109`, :issue:`15561`)
668666
- Improved performance and reduced memory when indexing with a ``MultiIndex`` (:issue:`15245`)
669667
- When reading buffer object in ``read_sas()`` method without specified format, filepath string is inferred rather than buffer object. (:issue:`14947`)
670-
- Improved performance of `rank()` for categorical data (:issue:`15498`)
668+
- Improved performance of ``.rank()`` for categorical data (:issue:`15498`)
671669
- Improved performance when using ``.unstack()`` (:issue:`15503`)
672670

673671

0 commit comments

Comments
 (0)