@@ -52,10 +52,10 @@ def test_groupby_with_timegrouper(self):
52
52
assert_frame_equal (result1 , expected )
53
53
54
54
df_sorted = df .sort_index ()
55
- result2 = df_sorted .groupby (pd .TimeGrouper (freq = '5D' )).sum ()
55
+ result2 = df_sorted .groupby (pd .Grouper (freq = '5D' )).sum ()
56
56
assert_frame_equal (result2 , expected )
57
57
58
- result3 = df .groupby (pd .TimeGrouper (freq = '5D' )).sum ()
58
+ result3 = df .groupby (pd .Grouper (freq = '5D' )).sum ()
59
59
assert_frame_equal (result3 , expected )
60
60
61
61
def test_groupby_with_timegrouper_methods (self ):
@@ -80,7 +80,7 @@ def test_groupby_with_timegrouper_methods(self):
80
80
81
81
for df in [df_original , df_sorted ]:
82
82
df = df .set_index ('Date' , drop = False )
83
- g = df .groupby (pd .TimeGrouper ( '6M' ))
83
+ g = df .groupby (pd .Grouper ( freq = '6M' ))
84
84
assert g .group_keys
85
85
assert isinstance (g .grouper , pd .core .groupby .BinGrouper )
86
86
groups = g .groups
@@ -265,11 +265,11 @@ def test_timegrouper_with_reg_groups(self):
265
265
['date' , 'user_id' ]).sort_index ().astype ('int64' )
266
266
expected .name = 'whole_cost'
267
267
268
- result1 = df .sort_index ().groupby ([pd .TimeGrouper (freq = freq ),
268
+ result1 = df .sort_index ().groupby ([pd .Grouper (freq = freq ),
269
269
'user_id' ])['whole_cost' ].sum ()
270
270
assert_series_equal (result1 , expected )
271
271
272
- result2 = df .groupby ([pd .TimeGrouper (freq = freq ), 'user_id' ])[
272
+ result2 = df .groupby ([pd .Grouper (freq = freq ), 'user_id' ])[
273
273
'whole_cost' ].sum ()
274
274
assert_series_equal (result2 , expected )
275
275
@@ -340,7 +340,7 @@ def sumfunc_series(x):
340
340
return pd .Series ([x ['value' ].sum ()], ('sum' ,))
341
341
342
342
expected = df .groupby (pd .Grouper (key = 'date' )).apply (sumfunc_series )
343
- result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
343
+ result = (df_dt .groupby (pd .Grouper (freq = 'M' , key = 'date' ))
344
344
.apply (sumfunc_series ))
345
345
assert_frame_equal (result .reset_index (drop = True ),
346
346
expected .reset_index (drop = True ))
@@ -358,8 +358,10 @@ def sumfunc_value(x):
358
358
return x .value .sum ()
359
359
360
360
expected = df .groupby (pd .Grouper (key = 'date' )).apply (sumfunc_value )
361
- result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
362
- .apply (sumfunc_value ))
361
+ with tm .assert_produces_warning (FutureWarning ,
362
+ check_stacklevel = False ):
363
+ result = (df_dt .groupby (pd .TimeGrouper (freq = 'M' , key = 'date' ))
364
+ .apply (sumfunc_value ))
363
365
assert_series_equal (result .reset_index (drop = True ),
364
366
expected .reset_index (drop = True ))
365
367
@@ -617,7 +619,7 @@ def test_nunique_with_timegrouper_and_nat(self):
617
619
Timestamp ('2016-06-28 16:46:28' )],
618
620
'data' : ['1' , '2' , '3' ]})
619
621
620
- grouper = pd .TimeGrouper (key = 'time' , freq = 'h' )
622
+ grouper = pd .Grouper (key = 'time' , freq = 'h' )
621
623
result = test .groupby (grouper )['data' ].nunique ()
622
624
expected = test [test .time .notnull ()].groupby (grouper )['data' ].nunique ()
623
625
tm .assert_series_equal (result , expected )
0 commit comments