forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_block_internals.py
560 lines (441 loc) · 19.4 KB
/
test_block_internals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# -*- coding: utf-8 -*-
from __future__ import print_function
import pytest
from datetime import datetime, timedelta
import itertools
from numpy import nan
import numpy as np
from pandas import (DataFrame, Series, Timestamp, date_range, compat,
option_context)
from pandas.compat import StringIO
import pandas as pd
from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal)
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
# Segregated collection of methods that require the BlockManager internal data
# structure
class TestDataFrameBlockInternals(TestData):
def test_cast_internals(self):
casted = DataFrame(self.frame._data, dtype=int)
expected = DataFrame(self.frame._series, dtype=int)
assert_frame_equal(casted, expected)
casted = DataFrame(self.frame._data, dtype=np.int32)
expected = DataFrame(self.frame._series, dtype=np.int32)
assert_frame_equal(casted, expected)
def test_consolidate(self):
self.frame['E'] = 7.
consolidated = self.frame._consolidate()
assert len(consolidated._data.blocks) == 1
# Ensure copy, do I want this?
recons = consolidated._consolidate()
assert recons is not consolidated
tm.assert_frame_equal(recons, consolidated)
self.frame['F'] = 8.
assert len(self.frame._data.blocks) == 3
self.frame._consolidate(inplace=True)
assert len(self.frame._data.blocks) == 1
def test_consolidate_deprecation(self):
self.frame['E'] = 7
with tm.assert_produces_warning(FutureWarning):
self.frame.consolidate()
def test_consolidate_inplace(self):
frame = self.frame.copy() # noqa
# triggers in-place consolidation
for letter in range(ord('A'), ord('Z')):
self.frame[chr(letter)] = chr(letter)
def test_as_matrix_consolidate(self):
self.frame['E'] = 7.
assert not self.frame._data.is_consolidated()
_ = self.frame.as_matrix() # noqa
assert self.frame._data.is_consolidated()
def test_modify_values(self):
self.frame.values[5] = 5
assert (self.frame.values[5] == 5).all()
# unconsolidated
self.frame['E'] = 7.
self.frame.values[6] = 6
assert (self.frame.values[6] == 6).all()
def test_boolean_set_uncons(self):
self.frame['E'] = 7.
expected = self.frame.values.copy()
expected[expected > 1] = 2
self.frame[self.frame > 1] = 2
assert_almost_equal(expected, self.frame.values)
def test_as_matrix_numeric_cols(self):
self.frame['foo'] = 'bar'
values = self.frame.as_matrix(['A', 'B', 'C', 'D'])
assert values.dtype == np.float64
def test_as_matrix_lcd(self):
# mixed lcd
values = self.mixed_float.as_matrix(['A', 'B', 'C', 'D'])
assert values.dtype == np.float64
values = self.mixed_float.as_matrix(['A', 'B', 'C'])
assert values.dtype == np.float32
values = self.mixed_float.as_matrix(['C'])
assert values.dtype == np.float16
# GH 10364
# B uint64 forces float because there are other signed int types
values = self.mixed_int.as_matrix(['A', 'B', 'C', 'D'])
assert values.dtype == np.float64
values = self.mixed_int.as_matrix(['A', 'D'])
assert values.dtype == np.int64
# B uint64 forces float because there are other signed int types
values = self.mixed_int.as_matrix(['A', 'B', 'C'])
assert values.dtype == np.float64
# as B and C are both unsigned, no forcing to float is needed
values = self.mixed_int.as_matrix(['B', 'C'])
assert values.dtype == np.uint64
values = self.mixed_int.as_matrix(['A', 'C'])
assert values.dtype == np.int32
values = self.mixed_int.as_matrix(['C', 'D'])
assert values.dtype == np.int64
values = self.mixed_int.as_matrix(['A'])
assert values.dtype == np.int32
values = self.mixed_int.as_matrix(['C'])
assert values.dtype == np.uint8
def test_constructor_with_convert(self):
# this is actually mostly a test of lib.maybe_convert_objects
# #2845
df = DataFrame({'A': [2 ** 63 - 1]})
result = df['A']
expected = Series(np.asarray([2 ** 63 - 1], np.int64), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2 ** 63]})
result = df['A']
expected = Series(np.asarray([2 ** 63], np.uint64), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [datetime(2005, 1, 1), True]})
result = df['A']
expected = Series(np.asarray([datetime(2005, 1, 1), True], np.object_),
name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [None, 1]})
result = df['A']
expected = Series(np.asarray([np.nan, 1], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0, 2]})
result = df['A']
expected = Series(np.asarray([1.0, 2], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, 3]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, 3.0]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, True]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0, None]})
result = df['A']
expected = Series(np.asarray([1.0, np.nan], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, None]})
result = df['A']
expected = Series(np.asarray(
[1.0 + 2.0j, np.nan], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2.0, 1, True, None]})
result = df['A']
expected = Series(np.asarray(
[2.0, 1, True, None], np.object_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2.0, 1, datetime(2006, 1, 1), None]})
result = df['A']
expected = Series(np.asarray([2.0, 1, datetime(2006, 1, 1),
None], np.object_), name='A')
assert_series_equal(result, expected)
def test_construction_with_mixed(self):
# test construction edge cases with mixed types
# f7u12, this does not work without extensive workaround
data = [[datetime(2001, 1, 5), nan, datetime(2001, 1, 2)],
[datetime(2000, 1, 2), datetime(2000, 1, 3),
datetime(2000, 1, 1)]]
df = DataFrame(data)
# check dtypes
result = df.get_dtype_counts().sort_values()
expected = Series({'datetime64[ns]': 3})
# mixed-type frames
self.mixed_frame['datetime'] = datetime.now()
self.mixed_frame['timedelta'] = timedelta(days=1, seconds=1)
assert self.mixed_frame['datetime'].dtype == 'M8[ns]'
assert self.mixed_frame['timedelta'].dtype == 'm8[ns]'
result = self.mixed_frame.get_dtype_counts().sort_values()
expected = Series({'float64': 4,
'object': 1,
'datetime64[ns]': 1,
'timedelta64[ns]': 1}).sort_values()
assert_series_equal(result, expected)
def test_construction_with_conversions(self):
# convert from a numpy array of non-ns timedelta64
arr = np.array([1, 2, 3], dtype='timedelta64[s]')
df = DataFrame(index=range(3))
df['A'] = arr
expected = DataFrame({'A': pd.timedelta_range('00:00:01', periods=3,
freq='s')},
index=range(3))
assert_frame_equal(df, expected)
expected = DataFrame({
'dt1': Timestamp('20130101'),
'dt2': date_range('20130101', periods=3),
# 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'),
}, index=range(3))
df = DataFrame(index=range(3))
df['dt1'] = np.datetime64('2013-01-01')
df['dt2'] = np.array(['2013-01-01', '2013-01-02', '2013-01-03'],
dtype='datetime64[D]')
# df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01
# 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')
assert_frame_equal(df, expected)
def test_constructor_compound_dtypes(self):
# GH 5191
# compound dtypes should raise not-implementederror
def f(dtype):
data = list(itertools.repeat((datetime(2001, 1, 1),
"aa", 20), 9))
return DataFrame(data=data,
columns=["A", "B", "C"],
dtype=dtype)
pytest.raises(NotImplementedError, f,
[("A", "datetime64[h]"),
("B", "str"),
("C", "int32")])
# these work (though results may be unexpected)
f('int64')
f('float64')
# 10822
# invalid error message on dt inference
if not compat.is_platform_windows():
f('M8[ns]')
def test_equals_different_blocks(self):
# GH 9330
df0 = pd.DataFrame({"A": ["x", "y"], "B": [1, 2],
"C": ["w", "z"]})
df1 = df0.reset_index()[["A", "B", "C"]]
# this assert verifies that the above operations have
# induced a block rearrangement
assert (df0._data.blocks[0].dtype != df1._data.blocks[0].dtype)
# do the real tests
assert_frame_equal(df0, df1)
assert df0.equals(df1)
assert df1.equals(df0)
def test_copy_blocks(self):
# API/ENH 9607
df = DataFrame(self.frame, copy=True)
column = df.columns[0]
# use the default copy=True, change a column
# deprecated 0.21.0
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
blocks = df.as_blocks()
for dtype, _df in blocks.items():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did not change the original DataFrame
assert not _df[column].equals(df[column])
def test_no_copy_blocks(self):
# API/ENH 9607
df = DataFrame(self.frame, copy=True)
column = df.columns[0]
# use the copy=False, change a column
# deprecated 0.21.0
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
blocks = df.as_blocks(copy=False)
for dtype, _df in blocks.items():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did change the original DataFrame
assert _df[column].equals(df[column])
def test_copy(self):
cop = self.frame.copy()
cop['E'] = cop['A']
assert 'E' not in self.frame
# copy objects
copy = self.mixed_frame.copy()
assert copy._data is not self.mixed_frame._data
def test_pickle(self):
unpickled = tm.round_trip_pickle(self.mixed_frame)
assert_frame_equal(self.mixed_frame, unpickled)
# buglet
self.mixed_frame._data.ndim
# empty
unpickled = tm.round_trip_pickle(self.empty)
repr(unpickled)
# tz frame
unpickled = tm.round_trip_pickle(self.tzframe)
assert_frame_equal(self.tzframe, unpickled)
def test_consolidate_datetime64(self):
# numpy vstack bug
data = """\
starting,ending,measure
2012-06-21 00:00,2012-06-23 07:00,77
2012-06-23 07:00,2012-06-23 16:30,65
2012-06-23 16:30,2012-06-25 08:00,77
2012-06-25 08:00,2012-06-26 12:00,0
2012-06-26 12:00,2012-06-27 08:00,77
"""
df = pd.read_csv(StringIO(data), parse_dates=[0, 1])
ser_starting = df.starting
ser_starting.index = ser_starting.values
ser_starting = ser_starting.tz_localize('US/Eastern')
ser_starting = ser_starting.tz_convert('UTC')
ser_starting.index.name = 'starting'
ser_ending = df.ending
ser_ending.index = ser_ending.values
ser_ending = ser_ending.tz_localize('US/Eastern')
ser_ending = ser_ending.tz_convert('UTC')
ser_ending.index.name = 'ending'
df.starting = ser_starting.index
df.ending = ser_ending.index
tm.assert_index_equal(pd.DatetimeIndex(
df.starting), ser_starting.index)
tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index)
def test_is_mixed_type(self):
assert not self.frame._is_mixed_type
assert self.mixed_frame._is_mixed_type
def test_get_numeric_data(self):
# TODO(wesm): unused?
intname = np.dtype(np.int_).name # noqa
floatname = np.dtype(np.float_).name # noqa
datetime64name = np.dtype('M8[ns]').name
objectname = np.dtype(np.object_).name
df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
'f': Timestamp('20010102')},
index=np.arange(10))
result = df.get_dtype_counts()
expected = Series({'int64': 1, 'float64': 1,
datetime64name: 1, objectname: 1})
result.sort_index()
expected.sort_index()
assert_series_equal(result, expected)
df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
'd': np.array([1.] * 10, dtype='float32'),
'e': np.array([1] * 10, dtype='int32'),
'f': np.array([1] * 10, dtype='int16'),
'g': Timestamp('20010102')},
index=np.arange(10))
result = df._get_numeric_data()
expected = df.loc[:, ['a', 'b', 'd', 'e', 'f']]
assert_frame_equal(result, expected)
only_obj = df.loc[:, ['c', 'g']]
result = only_obj._get_numeric_data()
expected = df.loc[:, []]
assert_frame_equal(result, expected)
df = DataFrame.from_dict(
{'a': [1, 2], 'b': ['foo', 'bar'], 'c': [np.pi, np.e]})
result = df._get_numeric_data()
expected = DataFrame.from_dict({'a': [1, 2], 'c': [np.pi, np.e]})
assert_frame_equal(result, expected)
df = result.copy()
result = df._get_numeric_data()
expected = df
assert_frame_equal(result, expected)
def test_convert_objects(self):
oops = self.mixed_frame.T.T
converted = oops._convert(datetime=True)
assert_frame_equal(converted, self.mixed_frame)
assert converted['A'].dtype == np.float64
# force numeric conversion
self.mixed_frame['H'] = '1.'
self.mixed_frame['I'] = '1'
# add in some items that will be nan
length = len(self.mixed_frame)
self.mixed_frame['J'] = '1.'
self.mixed_frame['K'] = '1'
self.mixed_frame.loc[0:5, ['J', 'K']] = 'garbled'
converted = self.mixed_frame._convert(datetime=True, numeric=True)
assert converted['H'].dtype == 'float64'
assert converted['I'].dtype == 'int64'
assert converted['J'].dtype == 'float64'
assert converted['K'].dtype == 'float64'
assert len(converted['J'].dropna()) == length - 5
assert len(converted['K'].dropna()) == length - 5
# via astype
converted = self.mixed_frame.copy()
converted['H'] = converted['H'].astype('float64')
converted['I'] = converted['I'].astype('int64')
assert converted['H'].dtype == 'float64'
assert converted['I'].dtype == 'int64'
# via astype, but errors
converted = self.mixed_frame.copy()
with tm.assert_raises_regex(ValueError, 'invalid literal'):
converted['H'].astype('int32')
# mixed in a single column
df = DataFrame(dict(s=Series([1, 'na', 3, 4])))
result = df._convert(datetime=True, numeric=True)
expected = DataFrame(dict(s=Series([1, np.nan, 3, 4])))
assert_frame_equal(result, expected)
def test_convert_objects_no_conversion(self):
mixed1 = DataFrame(
{'a': [1, 2, 3], 'b': [4.0, 5, 6], 'c': ['x', 'y', 'z']})
mixed2 = mixed1._convert(datetime=True)
assert_frame_equal(mixed1, mixed2)
def test_infer_objects(self):
# GH 11221
df = DataFrame({'a': ['a', 1, 2, 3],
'b': ['b', 2.0, 3.0, 4.1],
'c': ['c', datetime(2016, 1, 1),
datetime(2016, 1, 2),
datetime(2016, 1, 3)],
'd': [1, 2, 3, 'd']},
columns=['a', 'b', 'c', 'd'])
df = df.iloc[1:].infer_objects()
assert df['a'].dtype == 'int64'
assert df['b'].dtype == 'float64'
assert df['c'].dtype == 'M8[ns]'
assert df['d'].dtype == 'object'
expected = DataFrame({'a': [1, 2, 3],
'b': [2.0, 3.0, 4.1],
'c': [datetime(2016, 1, 1),
datetime(2016, 1, 2),
datetime(2016, 1, 3)],
'd': [2, 3, 'd']},
columns=['a', 'b', 'c', 'd'])
# reconstruct frame to verify inference is same
tm.assert_frame_equal(df.reset_index(drop=True), expected)
def test_stale_cached_series_bug_473(self):
# this is chained, but ok
with option_context('chained_assignment', None):
Y = DataFrame(np.random.random((4, 4)), index=('a', 'b', 'c', 'd'),
columns=('e', 'f', 'g', 'h'))
repr(Y)
Y['e'] = Y['e'].astype('object')
Y['g']['c'] = np.NaN
repr(Y)
result = Y.sum() # noqa
exp = Y['g'].sum() # noqa
assert pd.isna(Y['g']['c'])
def test_get_X_columns(self):
# numeric and object columns
df = DataFrame({'a': [1, 2, 3],
'b': [True, False, True],
'c': ['foo', 'bar', 'baz'],
'd': [None, None, None],
'e': [3.14, 0.577, 2.773]})
tm.assert_index_equal(df._get_numeric_data().columns,
pd.Index(['a', 'b', 'e']))
def test_strange_column_corruption_issue(self):
# (wesm) Unclear how exactly this is related to internal matters
df = DataFrame(index=[0, 1])
df[0] = nan
wasCol = {}
# uncommenting these makes the results match
# for col in xrange(100, 200):
# wasCol[col] = 1
# df[col] = nan
for i, dt in enumerate(df.index):
for col in range(100, 200):
if col not in wasCol:
wasCol[col] = 1
df[col] = nan
df[col][dt] = i
myid = 100
first = len(df.loc[pd.isna(df[myid]), [myid]])
second = len(df.loc[pd.isna(df[myid]), [myid]])
assert first == second == 0