forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathindexing.py
1427 lines (1106 loc) · 47.9 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=W0223
from datetime import datetime
from pandas.core.common import _asarray_tuplesafe, is_list_like
from pandas.core.index import Index, MultiIndex, _ensure_index
from pandas.compat import range, zip
import pandas.compat as compat
import pandas.core.common as com
from pandas.core.common import (_is_bool_indexer,
ABCSeries, ABCDataFrame, ABCPanel)
import pandas.lib as lib
import numpy as np
# the supported indexers
def get_indexers_list():
return [
('ix' ,_NDFrameIndexer),
('iloc',_iLocIndexer ),
('loc' ,_LocIndexer ),
('at' ,_AtIndexer ),
('iat' ,_iAtIndexer ),
]
# "null slice"
_NS = slice(None, None)
class IndexingError(Exception):
pass
class _NDFrameIndexer(object):
_exception = KeyError
def __init__(self, obj, name):
self.obj = obj
self.ndim = obj.ndim
self.name = name
def __iter__(self):
raise NotImplementedError('ix is not iterable')
def __getitem__(self, key):
if type(key) is tuple:
try:
return self.obj.get_value(*key)
except Exception:
pass
return self._getitem_tuple(key)
else:
return self._getitem_axis(key, axis=0)
def _get_label(self, label, axis=0):
# ueber-hack
if (isinstance(label, tuple) and
isinstance(label[axis], slice)):
raise IndexingError('no slices here')
try:
return self.obj._xs(label, axis=axis, copy=False)
except Exception:
return self.obj._xs(label, axis=axis, copy=True)
def _get_loc(self, key, axis=0):
return self.obj._ixs(key, axis=axis)
def _slice(self, obj, axis=0, raise_on_error=False):
return self.obj._slice(obj, axis=axis, raise_on_error=raise_on_error)
def __setitem__(self, key, value):
# kludgetastic
ax = self.obj._get_axis(0)
if isinstance(ax, MultiIndex):
try:
indexer = ax.get_loc(key)
self._setitem_with_indexer(indexer, value)
return
except Exception:
pass
if isinstance(key, tuple):
if len(key) > self.ndim:
raise IndexingError('only tuples of length <= %d supported' %
self.ndim)
indexer = self._convert_tuple(key, is_setter=True)
else:
indexer = self._convert_to_indexer(key, is_setter=True)
self._setitem_with_indexer(indexer, value)
def _has_valid_tuple(self, key):
pass
def _convert_tuple(self, key, is_setter=False):
keyidx = []
for i, k in enumerate(key):
idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter)
keyidx.append(idx)
return tuple(keyidx)
def _has_valid_setitem_indexer(self, indexer):
return True
def _has_valid_positional_setitem_indexer(self, indexer):
""" validate that an positional indexer cannot enlarge its target
will raise if needed, does not modify the indexer externally """
if isinstance(indexer, dict):
raise IndexError("{0} cannot enlarge its target object".format(self.name))
else:
if not isinstance(indexer, tuple):
indexer = self._tuplify(indexer)
for ax, i in zip(self.obj.axes,indexer):
if isinstance(i, slice):
# should check the stop slice?
pass
elif is_list_like(i):
# should check the elements?
pass
elif com.is_integer(i):
if i >= len(ax):
raise IndexError("{0} cannot enlarge its target object".format(self.name))
elif isinstance(i, dict):
raise IndexError("{0} cannot enlarge its target object".format(self.name))
return True
def _setitem_with_indexer(self, indexer, value):
self._has_valid_setitem_indexer(indexer)
# also has the side effect of consolidating in-place
from pandas import Panel, DataFrame, Series
# maybe partial set
take_split_path = self.obj._is_mixed_type
if isinstance(indexer,tuple):
nindexer = []
for i, idx in enumerate(indexer):
if isinstance(idx, dict):
# reindex the axis to the new value
# and set inplace
key,_ = _convert_missing_indexer(idx)
# if this is the items axes, then take the main missing path
# first; this correctly sets the dtype and avoids cache issues
# essentially this separates out the block that is needed to possibly
# be modified
if self.ndim > 1 and i == self.obj._info_axis_number:
# add the new item, and set the value
new_indexer = _convert_from_missing_indexer_tuple(indexer)
self.obj[key] = np.nan
self.obj.loc[new_indexer] = value
return self.obj
# reindex the axis
index = self.obj._get_axis(i)
labels = _safe_append_to_index(index, key)
self.obj._data = self.obj.reindex_axis(labels,i)._data
if isinstance(labels,MultiIndex):
self.obj.sortlevel(inplace=True)
labels = self.obj._get_axis(i)
nindexer.append(labels.get_loc(key))
else:
nindexer.append(idx)
indexer = tuple(nindexer)
else:
indexer, missing = _convert_missing_indexer(indexer)
if missing:
# reindex the axis to the new value
# and set inplace
if self.ndim == 1:
index = self.obj.index
if len(index) == 0:
new_index = Index([indexer])
else:
new_index = _safe_append_to_index(index, indexer)
new_values = np.concatenate([self.obj.values, [value]])
self.obj._data = self.obj._constructor(new_values, index=new_index, name=self.obj.name)
return self.obj
elif self.ndim == 2:
index = self.obj._get_axis(0)
labels = _safe_append_to_index(index, indexer)
self.obj._data = self.obj.reindex_axis(labels,0)._data
return getattr(self.obj,self.name).__setitem__(indexer,value)
# set using setitem (Panel and > dims)
elif self.ndim >= 3:
return self.obj.__setitem__(indexer,value)
# set
info_axis = self.obj._info_axis_number
item_labels = self.obj._get_axis(info_axis)
# if we have a complicated setup, take the split path
if isinstance(indexer, tuple) and any([ isinstance(ax,MultiIndex) for ax in self.obj.axes ]):
take_split_path = True
# align and set the values
if take_split_path:
if not isinstance(indexer, tuple):
indexer = self._tuplify(indexer)
if isinstance(value, ABCSeries):
value = self._align_series(indexer, value)
info_idx = indexer[info_axis]
if com.is_integer(info_idx):
info_idx = [info_idx]
labels = item_labels[info_idx]
# if we have a partial multiindex, then need to adjust the plane indexer here
if len(labels) == 1 and isinstance(self.obj[labels[0]].index,MultiIndex):
index = self.obj[labels[0]].index
idx = indexer[:info_axis][0]
try:
if idx in index:
idx = index.get_loc(idx)
except:
pass
plane_indexer = tuple([idx]) + indexer[info_axis + 1:]
lplane_indexer = _length_of_indexer(plane_indexer[0],index)
if is_list_like(value) and lplane_indexer != len(value):
raise ValueError("cannot set using a multi-index selection indexer with a different length than the value")
# non-mi
else:
plane_indexer = indexer[:info_axis] + indexer[info_axis + 1:]
if info_axis > 0:
plane_axis = self.obj.axes[:info_axis][0]
lplane_indexer = _length_of_indexer(plane_indexer[0],plane_axis)
else:
lplane_indexer = 0
def setter(item, v):
s = self.obj[item]
pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer
# set the item, possibly having a dtype change
s = s.copy()
s._data = s._data.setitem(pi,v)
self.obj[item] = s
def can_do_equal_len():
""" return True if we have an equal len settable """
if not len(labels) == 1:
return False
l = len(value)
item = labels[0]
index = self.obj[item].index
# equal len list/ndarray
if len(index) == l:
return True
elif lplane_indexer == l:
return True
return False
if _is_list_like(value):
# we have an equal len Frame
if isinstance(value, ABCDataFrame) and value.ndim > 1:
for item in labels:
# align to
if item in value:
v = value[item]
v = v.reindex(self.obj[item].index & v.index)
setter(item, v.values)
else:
setter(item, np.nan)
# we have an equal len ndarray to our labels
elif isinstance(value, np.ndarray) and value.ndim == 2:
if len(labels) != value.shape[1]:
raise ValueError('Must have equal len keys and value when'
' setting with an ndarray')
for i, item in enumerate(labels):
setter(item, value[:,i])
# we have an equal len list/ndarray
elif can_do_equal_len():
setter(labels[0], value)
# per label values
else:
for item, v in zip(labels, value):
setter(item, v)
else:
# scalar
for item in labels:
setter(item, value)
else:
if isinstance(indexer, tuple):
indexer = _maybe_convert_ix(*indexer)
if isinstance(value, ABCSeries):
value = self._align_series(indexer, value)
elif isinstance(value, ABCDataFrame):
value = self._align_frame(indexer, value)
if isinstance(value, ABCPanel):
value = self._align_panel(indexer, value)
self.obj._data = self.obj._data.setitem(indexer,value)
def _align_series(self, indexer, ser):
# indexer to assign Series can be tuple or scalar
if isinstance(indexer, tuple):
aligners = [ not _is_null_slice(idx) for idx in indexer ]
single_aligner = sum(aligners) == 1
is_frame = self.obj.ndim == 2
is_panel = self.obj.ndim >= 3
# are we a single alignable value on a non-primary
# dim (e.g. panel: 1,2, or frame: 0) ?
# hence need to align to a single axis dimension
# rather that find all valid dims
# frame
if is_frame:
single_aligner = single_aligner and aligners[0]
# panel
elif is_panel:
single_aligner = single_aligner and (aligners[1] or aligners[2])
obj = self.obj
for i, idx in enumerate(indexer):
ax = obj.axes[i]
# multiple aligners (or null slices)
if com._is_sequence(idx) or isinstance(idx, slice):
if single_aligner and _is_null_slice(idx):
continue
new_ix = ax[idx]
if not is_list_like(new_ix):
new_ix = Index([new_ix])
if ser.index.equals(new_ix):
return ser.values.copy()
return ser.reindex(new_ix).values
# 2 dims
elif single_aligner and is_frame:
# reindex along index
ax = self.obj.axes[1]
if ser.index.equals(ax):
return ser.values.copy()
return ser.reindex(ax).values
# >2 dims
elif single_aligner:
broadcast = []
for n, labels in enumerate(self.obj._get_plane_axes(i)):
# reindex along the matching dimensions
if len(labels & ser.index):
ser = ser.reindex(labels)
else:
broadcast.append((n,len(labels)))
# broadcast along other dims
ser = ser.values.copy()
for (axis,l) in broadcast:
shape = [ -1 ] * (len(broadcast)+1)
shape[axis] = l
ser = np.tile(ser,l).reshape(shape)
if self.obj.ndim == 3:
ser = ser.T
return ser
elif np.isscalar(indexer):
ax = self.obj._get_axis(1)
if ser.index.equals(ax):
return ser.values.copy()
return ser.reindex(ax).values
raise ValueError('Incompatible indexer with Series')
def _align_frame(self, indexer, df):
is_frame = self.obj.ndim == 2
is_panel = self.obj.ndim >= 3
if isinstance(indexer, tuple):
idx, cols = None, None
sindexers = []
for i, ix in enumerate(indexer):
ax = self.obj.axes[i]
if com._is_sequence(ix) or isinstance(ix, slice):
if idx is None:
idx = ax[ix].ravel()
elif cols is None:
cols = ax[ix].ravel()
else:
break
else:
sindexers.append(i)
# panel
if is_panel:
if len(sindexers) == 1 and idx is None and cols is None:
if sindexers[0] == 0:
df = df.T
return self.obj.conform(df,axis=sindexers[0])
df = df.T
if idx is not None and cols is not None:
if df.index.equals(idx) and df.columns.equals(cols):
val = df.copy().values
else:
val = df.reindex(idx, columns=cols).values
return val
elif ((isinstance(indexer, slice) or com.is_list_like(indexer))
and is_frame):
ax = self.obj.index[indexer]
if df.index.equals(ax):
val = df.copy().values
else:
val = df.reindex(ax).values
return val
elif np.isscalar(indexer) and not is_frame:
idx = self.obj.axes[1]
cols = self.obj.axes[2]
# by definition we are indexing on the 0th axis
if is_panel:
df = df.T
if idx.equals(df.index) and cols.equals(df.columns):
return df.copy().values
# a passed in dataframe which is actually a transpose
# of what is needed
elif idx.equals(df.columns) and cols.equals(df.index):
return df.T.copy().values
return df.reindex(idx, columns=cols).values
raise ValueError('Incompatible indexer with DataFrame')
def _align_panel(self, indexer, df):
is_frame = self.obj.ndim == 2
is_panel = self.obj.ndim >= 3
raise NotImplementedError("cannot set using an indexer with a Panel yet!")
def _getitem_tuple(self, tup):
try:
return self._getitem_lowerdim(tup)
except IndexingError:
pass
# no multi-index, so validate all of the indexers
self._has_valid_tuple(tup)
# ugly hack for GH #836
if self._multi_take_opportunity(tup):
return self._multi_take(tup)
# no shortcut needed
retval = self.obj
for i, key in enumerate(tup):
if i >= self.obj.ndim:
raise IndexingError('Too many indexers')
if _is_null_slice(key):
continue
retval = getattr(retval,self.name)._getitem_axis(key, axis=i)
return retval
def _multi_take_opportunity(self, tup):
from pandas.core.generic import NDFrame
# ugly hack for GH #836
if not isinstance(self.obj, NDFrame):
return False
if not all(_is_list_like(x) for x in tup):
return False
# just too complicated
for ax in self.obj._data.axes:
if isinstance(ax, MultiIndex):
return False
return True
def _multi_take(self, tup):
""" create the reindex map for our objects, raise the _exception if we can't create the indexer """
try:
o = self.obj
d = dict([ (a,self._convert_for_reindex(t, axis=o._get_axis_number(a))) for t, a in zip(tup, o._AXIS_ORDERS) ])
return o.reindex(**d)
except:
raise self._exception
def _convert_for_reindex(self, key, axis=0):
labels = self.obj._get_axis(axis)
if com._is_bool_indexer(key):
key = _check_bool_indexer(labels, key)
return labels[key]
else:
if isinstance(key, Index):
# want Index objects to pass through untouched
keyarr = key
else:
# asarray can be unsafe, NumPy strings are weird
keyarr = _asarray_tuplesafe(key)
if _is_integer_dtype(keyarr) and not _is_integer_index(labels):
keyarr = com._ensure_platform_int(keyarr)
return labels.take(keyarr)
return keyarr
def _getitem_lowerdim(self, tup):
ax0 = self.obj._get_axis(0)
# a bit kludgy
if isinstance(ax0, MultiIndex):
try:
return self._get_label(tup, axis=0)
except TypeError:
# slices are unhashable
pass
except Exception as e1:
if isinstance(tup[0], (slice, Index)):
raise IndexingError
# raise the error if we are not sorted
if not ax0.is_lexsorted_for_tuple(tup):
raise e1
try:
loc = ax0.get_loc(tup[0])
except KeyError:
raise e1
if len(tup) > self.obj.ndim:
raise IndexingError
# to avoid wasted computation
# df.ix[d1:d2, 0] -> columns first (True)
# df.ix[0, ['C', 'B', A']] -> rows first (False)
for i, key in enumerate(tup):
if _is_label_like(key) or isinstance(key, tuple):
section = self._getitem_axis(key, axis=i)
# we have yielded a scalar ?
if not _is_list_like(section):
return section
# might have been a MultiIndex
elif section.ndim == self.ndim:
new_key = tup[:i] + (_NS,) + tup[i + 1:]
# new_key = tup[:i] + tup[i+1:]
else:
new_key = tup[:i] + tup[i + 1:]
# unfortunately need an odious kludge here because of
# DataFrame transposing convention
if (isinstance(section, ABCDataFrame) and i > 0
and len(new_key) == 2):
a, b = new_key
new_key = b, a
if len(new_key) == 1:
new_key, = new_key
return getattr(section,self.name)[new_key]
raise IndexingError('not applicable')
def _getitem_axis(self, key, axis=0):
labels = self.obj._get_axis(axis)
if isinstance(key, slice):
return self._get_slice_axis(key, axis=axis)
elif _is_list_like(key) and not (isinstance(key, tuple) and
isinstance(labels, MultiIndex)):
if hasattr(key, 'ndim') and key.ndim > 1:
raise ValueError('Cannot index with multidimensional key')
return self._getitem_iterable(key, axis=axis)
else:
if com.is_integer(key):
if axis == 0 and isinstance(labels, MultiIndex):
try:
return self._get_label(key, axis=axis)
except (KeyError, TypeError):
if _is_integer_index(self.obj.index.levels[0]):
raise
if not _is_integer_index(labels):
return self._get_loc(key, axis=axis)
return self._get_label(key, axis=axis)
def _getitem_iterable(self, key, axis=0):
labels = self.obj._get_axis(axis)
def _reindex(keys, level=None):
try:
return self.obj.reindex_axis(keys, axis=axis, level=level)
except AttributeError:
# Series
if axis != 0:
raise AssertionError('axis must be 0')
return self.obj.reindex(keys, level=level)
if com._is_bool_indexer(key):
key = _check_bool_indexer(labels, key)
inds, = key.nonzero()
return self.obj.take(inds, axis=axis, convert=False)
else:
if isinstance(key, Index):
# want Index objects to pass through untouched
keyarr = key
else:
# asarray can be unsafe, NumPy strings are weird
keyarr = _asarray_tuplesafe(key)
if _is_integer_dtype(keyarr):
if labels.inferred_type != 'integer':
keyarr = np.where(keyarr < 0,
len(labels) + keyarr, keyarr)
if labels.inferred_type == 'mixed-integer':
indexer = labels.get_indexer(keyarr)
if (indexer >= 0).all():
self.obj.take(indexer, axis=axis, convert=True)
else:
return self.obj.take(keyarr, axis=axis)
elif not labels.inferred_type == 'integer':
return self.obj.take(keyarr, axis=axis)
# this is not the most robust, but...
if (isinstance(labels, MultiIndex) and
not isinstance(keyarr[0], tuple)):
level = 0
else:
level = None
keyarr_is_unique = Index(keyarr).is_unique
# existing labels are unique and indexer is unique
if labels.is_unique and keyarr_is_unique:
return _reindex(keyarr, level=level)
else:
indexer, missing = labels.get_indexer_non_unique(keyarr)
check = indexer != -1
result = self.obj.take(indexer[check], axis=axis, convert=False)
# need to merge the result labels and the missing labels
if len(missing):
l = np.arange(len(indexer))
missing = com._ensure_platform_int(missing)
missing_labels = keyarr.take(missing)
missing_indexer = com._ensure_int64(l[~check])
cur_labels = result._get_axis(axis).values
cur_indexer = com._ensure_int64(l[check])
new_labels = np.empty(tuple([len(indexer)]),dtype=object)
new_labels[cur_indexer] = cur_labels
new_labels[missing_indexer] = missing_labels
# reindex with the specified axis
ndim = self.obj.ndim
if axis+1 > ndim:
raise AssertionError("invalid indexing error with non-unique index")
# a unique indexer
if keyarr_is_unique:
new_indexer = (Index(cur_indexer) + Index(missing_indexer)).values
new_indexer[missing_indexer] = -1
# we have a non_unique selector, need to use the original indexer here
else:
# need to retake to have the same size as the indexer
rindexer = indexer.values
rindexer[~check] = 0
result = self.obj.take(rindexer, axis=axis, convert=False)
# reset the new indexer to account for the new size
new_indexer = np.arange(len(result))
new_indexer[~check] = -1
result = result._reindex_with_indexers({ axis : [ new_labels, new_indexer ] }, copy=True, allow_dups=True)
return result
def _convert_to_indexer(self, obj, axis=0, is_setter=False):
"""
Convert indexing key into something we can use to do actual fancy
indexing on an ndarray
Examples
ix[:5] -> slice(0, 5)
ix[[1,2,3]] -> [1,2,3]
ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz)
Going by Zen of Python?
"In the face of ambiguity, refuse the temptation to guess."
raise AmbiguousIndexError with integer labels?
- No, prefer label-based indexing
"""
labels = self.obj._get_axis(axis)
is_int_index = _is_integer_index(labels)
if com.is_integer(obj) and not is_int_index:
return obj
try:
return labels.get_loc(obj)
except (KeyError, TypeError):
pass
if isinstance(obj, slice):
ltype = labels.inferred_type
# in case of providing all floats, use label-based indexing
float_slice = (labels.inferred_type == 'floating'
and _is_float_slice(obj))
# floats that are within tolerance of int used as positions
int_slice = _is_index_slice(obj)
null_slice = obj.start is None and obj.stop is None
# could have integers in the first level of the MultiIndex,
# in which case we wouldn't want to do position-based slicing
position_slice = (int_slice
and not ltype == 'integer'
and not isinstance(labels, MultiIndex)
and not float_slice)
start, stop = obj.start, obj.stop
# last ditch effort: if we are mixed and have integers
try:
if position_slice and 'mixed' in ltype:
if start is not None:
i = labels.get_loc(start)
if stop is not None:
j = labels.get_loc(stop)
position_slice = False
except KeyError:
if ltype == 'mixed-integer-float':
raise
if null_slice or position_slice:
indexer = obj
else:
try:
indexer = labels.slice_indexer(start, stop, obj.step)
except Exception:
if _is_index_slice(obj):
if ltype == 'integer':
raise
indexer = obj
else:
raise
return indexer
elif _is_list_like(obj):
if com._is_bool_indexer(obj):
obj = _check_bool_indexer(labels, obj)
inds, = obj.nonzero()
return inds
else:
if isinstance(obj, Index):
objarr = obj.values
else:
objarr = _asarray_tuplesafe(obj)
# If have integer labels, defer to label-based indexing
if _is_integer_dtype(objarr) and not is_int_index:
if labels.inferred_type != 'integer':
objarr = np.where(objarr < 0,
len(labels) + objarr, objarr)
return objarr
# this is not the most robust, but...
if (isinstance(labels, MultiIndex) and
not isinstance(objarr[0], tuple)):
level = 0
_, indexer = labels.reindex(objarr, level=level)
check = labels.levels[0].get_indexer(objarr)
else:
level = None
# unique index
if labels.is_unique:
indexer = check = labels.get_indexer(objarr)
# non-unique (dups)
else:
indexer, missing = labels.get_indexer_non_unique(objarr)
check = indexer
mask = check == -1
if mask.any():
# mi here
if isinstance(obj, tuple) and is_setter:
return { 'key' : obj }
raise KeyError('%s not in index' % objarr[mask])
return indexer
else:
try:
return labels.get_loc(obj)
except (KeyError):
# allow a not found key only if we are a setter
if not is_list_like(obj) and is_setter:
return { 'key' : obj }
raise
def _tuplify(self, loc):
tup = [slice(None, None) for _ in range(self.ndim)]
tup[0] = loc
return tuple(tup)
def _get_slice_axis(self, slice_obj, axis=0):
obj = self.obj
if not _need_slice(slice_obj):
return obj
labels = obj._get_axis(axis)
ltype = labels.inferred_type
# in case of providing all floats, use label-based indexing
float_slice = (labels.inferred_type == 'floating'
and _is_float_slice(slice_obj))
# floats that are within tolerance of int used as positions
int_slice = _is_index_slice(slice_obj)
null_slice = slice_obj.start is None and slice_obj.stop is None
# could have integers in the first level of the MultiIndex,
# in which case we wouldn't want to do position-based slicing
position_slice = (int_slice
and not ltype == 'integer'
and not isinstance(labels, MultiIndex)
and not float_slice)
start, stop = slice_obj.start, slice_obj.stop
# last ditch effort: if we are mixed and have integers
try:
if position_slice and 'mixed' in ltype:
if start is not None:
i = labels.get_loc(start)
if stop is not None:
j = labels.get_loc(stop)
position_slice = False
except KeyError:
if ltype == 'mixed-integer-float':
raise
if null_slice or position_slice:
indexer = slice_obj
else:
try:
indexer = labels.slice_indexer(start, stop, slice_obj.step)
except Exception:
if _is_index_slice(slice_obj):
if ltype == 'integer':
raise
indexer = slice_obj
else:
raise
if isinstance(indexer, slice):
return self._slice(indexer, axis=axis)
else:
return self.obj.take(indexer, axis=axis)
class _LocationIndexer(_NDFrameIndexer):
_valid_types = None
_exception = Exception
def _has_valid_type(self, k, axis):
raise NotImplementedError()
def _has_valid_tuple(self, key):
""" check the key for valid keys across my indexer """
for i, k in enumerate(key):
if i >= self.obj.ndim:
raise ValueError('Too many indexers')
if not self._has_valid_type(k,i):
raise ValueError("Location based indexing can only have [%s] types" % self._valid_types)
def __getitem__(self, key):
if type(key) is tuple:
return self._getitem_tuple(key)
else:
return self._getitem_axis(key, axis=0)
def _getitem_axis(self, key, axis=0):
raise NotImplementedError()
def _getbool_axis(self, key, axis=0):
labels = self.obj._get_axis(axis)
key = _check_bool_indexer(labels, key)
inds, = key.nonzero()
try:
return self.obj.take(inds, axis=axis, convert=False)
except (Exception) as detail:
raise self._exception(detail)
def _get_slice_axis(self, slice_obj, axis=0):
""" this is pretty simple as we just have to deal with labels """
obj = self.obj
if not _need_slice(slice_obj):
return obj
labels = obj._get_axis(axis)
indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step)
if isinstance(indexer, slice):
return self._slice(indexer, axis=axis)
else:
return self.obj.take(indexer, axis=axis)
class _LocIndexer(_LocationIndexer):
""" purely label based location based indexing """
_valid_types = "labels (MUST BE IN THE INDEX), slices of labels (BOTH endpoints included! Can be slices of integers if the index is integers), listlike of labels, boolean"
_exception = KeyError
def _has_valid_type(self, key, axis):
ax = self.obj._get_axis(axis)
# valid for a label where all labels are in the index
# slice of lables (where start-end in labels)
# slice of integers (only if in the lables)
# boolean
if isinstance(key, slice):
if key.start is not None:
if key.start not in ax:
raise KeyError("start bound [%s] is not the [%s]" % (key.start,self.obj._get_axis_name(axis)))
if key.stop is not None:
if key.stop not in ax:
raise KeyError("stop bound [%s] is not in the [%s]" % (key.stop,self.obj._get_axis_name(axis)))
elif com._is_bool_indexer(key):
return True
elif _is_list_like(key):
# require all elements in the index
idx = _ensure_index(key)
if not idx.isin(ax).all():
raise KeyError("[%s] are not in ALL in the [%s]" % (key,self.obj._get_axis_name(axis)))