forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathreindex.py
202 lines (145 loc) · 6.1 KB
/
reindex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from .pandas_vb_common import *
from random import shuffle
class Reindexing(object):
goal_time = 0.2
def setup(self):
self.rng = DatetimeIndex(start='1/1/1970', periods=10000, freq='1min')
self.df = DataFrame(np.random.rand(10000, 10), index=self.rng,
columns=range(10))
self.df['foo'] = 'bar'
self.rng2 = Index(self.rng[::2])
self.df2 = DataFrame(index=range(10000),
data=np.random.rand(10000, 30), columns=range(30))
# multi-index
N = 5000
K = 200
level1 = tm.makeStringIndex(N).values.repeat(K)
level2 = np.tile(tm.makeStringIndex(K).values, N)
index = MultiIndex.from_arrays([level1, level2])
self.s1 = Series(np.random.randn((N * K)), index=index)
self.s2 = self.s1[::2]
def time_reindex_dates(self):
self.df.reindex(self.rng2)
def time_reindex_columns(self):
self.df2.reindex(columns=self.df.columns[1:5])
def time_reindex_multiindex(self):
self.s1.reindex(self.s2.index)
#----------------------------------------------------------------------
# Pad / backfill
class FillMethod(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq='1min')
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
def time_backfill_dates(self):
self.backfill(self.ts2, self.ts.index)
def time_pad_daterange(self):
self.pad(self.ts2, self.ts.index)
def time_backfill(self):
self.ts3.fillna(method='backfill')
def time_backfill_float32(self):
self.ts4.fillna(method='backfill')
def time_pad(self):
self.ts3.fillna(method='pad')
def time_pad_float32(self):
self.ts4.fillna(method='pad')
#----------------------------------------------------------------------
# align on level
class LevelAlign(object):
goal_time = 0.2
def setup(self):
self.index = MultiIndex(
levels=[np.arange(10), np.arange(100), np.arange(100)],
labels=[np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10)])
random.shuffle(self.index.values)
self.df = DataFrame(np.random.randn(len(self.index), 4),
index=self.index)
self.df_level = DataFrame(np.random.randn(100, 4),
index=self.index.levels[1])
def time_align_level(self):
self.df.align(self.df_level, level=1, copy=False)
def time_reindex_level(self):
self.df_level.reindex(self.df.index, level=1)
#----------------------------------------------------------------------
# drop_duplicates
class Duplicates(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2,
'value': np.random.randn((self.N * self.K)),})
self.col_array_list = list(self.df.values.T)
self.df2 = self.df.copy()
self.df2.ix[:10000, :] = np.nan
self.s = Series(np.random.randint(0, 1000, size=10000))
self.s2 = Series(np.tile(tm.makeStringIndex(1000).values, 10))
np.random.seed(1234)
self.N = 1000000
self.K = 10000
self.key1 = np.random.randint(0, self.K, size=self.N)
self.df_int = DataFrame({'key1': self.key1})
def time_frame_drop_dups(self):
self.df.drop_duplicates(['key1', 'key2'])
def time_frame_drop_dups_inplace(self):
self.df.drop_duplicates(['key1', 'key2'], inplace=True)
def time_frame_drop_dups_na(self):
self.df2.drop_duplicates(['key1', 'key2'])
def time_frame_drop_dups_na_inplace(self):
self.df2.drop_duplicates(['key1', 'key2'], inplace=True)
def time_series_drop_dups_int(self):
self.s.drop_duplicates()
def time_series_drop_dups_string(self):
self.s2.drop_duplicates()
def time_frame_drop_dups_int(self):
self.df_int.drop_duplicates()
#----------------------------------------------------------------------
# blog "pandas escaped the zoo"
class Align(object):
goal_time = 0.2
def setup(self):
n = 50000
indices = tm.makeStringIndex(n)
subsample_size = 40000
def sample(values, k):
sampler = np.arange(len(values))
shuffle(sampler)
return values.take(sampler[:k])
self.x = Series(np.random.randn(50000), indices)
self.y = Series(np.random.randn(subsample_size),
index=sample(indices, subsample_size))
def time_align_series_irregular_string(self):
(self.x + self.y)
class LibFastZip(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
self.df2 = self.df.copy()
self.df2.ix[:10000, :] = np.nan
self.col_array_list2 = list(self.df2.values.T)
def time_lib_fast_zip(self):
lib.fast_zip(self.col_array_list)
def time_lib_fast_zip_fillna(self):
lib.fast_zip_fillna(self.col_array_list2)