forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsparse.py
142 lines (101 loc) · 4.94 KB
/
sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from .pandas_vb_common import *
import pandas.core.sparse.series
import scipy.sparse
from pandas.core.sparse import SparseSeries, SparseDataFrame
from pandas.core.sparse import SparseDataFrame
class sparse_series_to_frame(object):
goal_time = 0.2
def setup(self):
self.K = 50
self.N = 50000
self.rng = np.asarray(date_range('1/1/2000', periods=self.N, freq='T'))
self.series = {}
for i in range(1, (self.K + 1)):
self.data = np.random.randn(self.N)[:(- i)]
self.this_rng = self.rng[:(- i)]
self.data[100:] = np.nan
self.series[i] = SparseSeries(self.data, index=self.this_rng)
def time_sparse_series_to_frame(self):
SparseDataFrame(self.series)
class sparse_frame_constructor(object):
goal_time = 0.2
def time_sparse_frame_constructor(self):
SparseDataFrame(columns=np.arange(100), index=np.arange(1000))
class sparse_series_from_coo(object):
goal_time = 0.2
def setup(self):
self.A = scipy.sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100))
def time_sparse_series_from_coo(self):
self.ss = pandas.core.sparse.series.SparseSeries.from_coo(self.A)
class sparse_series_to_coo(object):
goal_time = 0.2
def setup(self):
self.s = pd.Series(([np.nan] * 10000))
self.s[0] = 3.0
self.s[100] = (-1.0)
self.s[999] = 12.1
self.s.index = pd.MultiIndex.from_product((range(10), range(10), range(10), range(10)))
self.ss = self.s.to_sparse()
def time_sparse_series_to_coo(self):
self.ss.to_coo(row_levels=[0, 1], column_levels=[2, 3], sort_labels=True)
class sparse_arithmetic_int(object):
goal_time = 0.2
def setup(self):
np.random.seed(1)
self.a_10percent = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=np.nan)
self.b_10percent = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=np.nan)
self.a_10percent_zero = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=0)
self.b_10percent_zero = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=0)
self.a_1percent = self.make_sparse_array(length=1000000, dense_size=10000, fill_value=np.nan)
self.b_1percent = self.make_sparse_array(length=1000000, dense_size=10000, fill_value=np.nan)
def make_sparse_array(self, length, dense_size, fill_value):
arr = np.array([fill_value] * length, dtype=np.float64)
indexer = np.unique(np.random.randint(0, length, dense_size))
arr[indexer] = np.random.randint(0, 100, len(indexer))
return pd.SparseArray(arr, fill_value=fill_value)
def time_sparse_make_union(self):
self.a_10percent.sp_index.make_union(self.b_10percent.sp_index)
def time_sparse_intersect(self):
self.a_10percent.sp_index.intersect(self.b_10percent.sp_index)
def time_sparse_addition_10percent(self):
self.a_10percent + self.b_10percent
def time_sparse_addition_10percent_zero(self):
self.a_10percent_zero + self.b_10percent_zero
def time_sparse_addition_1percent(self):
self.a_1percent + self.b_1percent
def time_sparse_division_10percent(self):
self.a_10percent / self.b_10percent
def time_sparse_division_10percent_zero(self):
self.a_10percent_zero / self.b_10percent_zero
def time_sparse_division_1percent(self):
self.a_1percent / self.b_1percent
class sparse_arithmetic_block(object):
goal_time = 0.2
def setup(self):
np.random.seed(1)
self.a = self.make_sparse_array(length=1000000, num_blocks=1000,
block_size=10, fill_value=np.nan)
self.b = self.make_sparse_array(length=1000000, num_blocks=1000,
block_size=10, fill_value=np.nan)
self.a_zero = self.make_sparse_array(length=1000000, num_blocks=1000,
block_size=10, fill_value=0)
self.b_zero = self.make_sparse_array(length=1000000, num_blocks=1000,
block_size=10, fill_value=np.nan)
def make_sparse_array(self, length, num_blocks, block_size, fill_value):
a = np.array([fill_value] * length)
for block in range(num_blocks):
i = np.random.randint(0, length)
a[i:i + block_size] = np.random.randint(0, 100, len(a[i:i + block_size]))
return pd.SparseArray(a, fill_value=fill_value)
def time_sparse_make_union(self):
self.a.sp_index.make_union(self.b.sp_index)
def time_sparse_intersect(self):
self.a.sp_index.intersect(self.b.sp_index)
def time_sparse_addition(self):
self.a + self.b
def time_sparse_addition_zero(self):
self.a_zero + self.b_zero
def time_sparse_division(self):
self.a / self.b
def time_sparse_division_zero(self):
self.a_zero / self.b_zero